Publication

COPYRIGHT NOTICE: These materials are presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Selected Publication–Journals

  1. Yue Sun, Kun Gao, Zhengwang Wu, Guannan Li, Xiaopeng Zong, Zhihao Lei, Ying Wei, Jun Ma, Xiaoping Yang, Xue Feng, Li Zhao, Trung Le Phan, Jitae Shin, Tao Zhong, Yu Zhang, Lequan Yu, Caizi Li, Ramesh Basnet, M. Omair Ahmad, M.N.S. Swamy, Wenao Ma, Qi Dou, Toan Duc Bui, Camilo Bermudez Noguera, Bennett Landman, Senior Member, IEEE, Ian H. Gotlib, Kathryn L. Humphreys, Sarah Shultz, Longchuan Li, Sijie Niu, Weili Lin, Valerie Jewells, Dinggang Shen, Gang Li, Li Wang, Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge, IEEE Transactions on Medical Imaging, 2021.
  2. Jian Chen, Zhenghan Fang, Guofu Zhang, Lei Ling, Gang Li, He Zhang, Li Wang, Automatic Brain Extraction from 3D Fetal MR Image with Deep Learning-based Multi-step Framework, Computerized Medical Imaging and Graphics, 2020.
  3. Weiyan Yin, Tengfei Li, Sheng-Che Hung, Han Zhang, Li Wang, Dinggang Shen, Hongtu Zhu, Peter J Mucha, Jessica R Cohen, Weili Lin, The emergence of a functionally flexible brain during early infancy, Proceedings of the National Academy of Sciences, 117 (38), 23904-23913, 2020.
  4. Dan Hu, Han Zhang, Zhengwang Wu, Fan Wang, Li Wang, J Keith Smith, Weili Lin, Gang Li, Dinggang Shen, Disentangled-Multimodal Adversarial Autoencoder: Application to Infant Age Prediction with Incomplete Multimodal Neuroimages, IEEE Transactions on Medical Imaging, 2020.
  5. Dingna Duan, Shunren Xia, Islem Rekik, Zhengwang Wu, Li Wang, Weili Lin, John H Gilmore, Dinggang Shen, Gang Li, Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins, Human brain mapping 41 (8), 1985-2003, 2020.
  6. Jun Zhang, Mingxia Liu, Li Wang, Si Chen, Peng Yuan, Jianfu Li, Steve Guo-Fang Shen, Zhen Tang, Ken-Chung Chen, James J Xia, Dinggang Shen, Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization, Medical Image Analysis, Volume 60 Pages 101621, 2020.
  7. Yue Sun, Shijie Niu, Xizhan Gao, Jie Su, Jiwen Dong, Yuehui Chen, Li Wang, Adaptive-guided-coupling-probability Level Set for Retinal Layer Segmentation. IEEE Journal of Biomedical and Health Informatics, 10.1109/JBHI.2020.2981562, 2020.
  8. Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces from 3D Intraoral Scanners, IEEE Transactions on Medical Imaging, 10.1109/TMI.2020.2971730, 2020.
  9. Deqiang Xiao, Chunfeng Lian, Li Wang, Hannah Deng, Kim-Han Thung, Jihua Zhu, Peng Yuan, Leonel Perez, Jr. Jaime Gateno, Pew-Thian Yap, James J. Xia, Dinggang Shen. Estimating Reference Shape Model for Personalized Surgical Reconstruction of Craniomaxillofacial Defects, IEEE Transactions on Biomedical Engineering, 10.1109/TBME.2020.2990586, 2020.
  10. Dingna Duan, Shunren Xia, Islem Rekik, Zhengwang Wu, Li Wang, Weili Lin, John H Gilmore, Dinggang Shen, Gang Li. Individual Identification and Individual Variability Analysis Based on Cortical Folding Features in Developing Infant Singletons and TwinsHuman Brain Mapping, https://doi.org/10.1002/hbm.24924, 2020.
  11. Xu Chen, Chunfeng Lian, Li Wang, Hannah Deng, Steve H. Fung, Dong Nie, Kim-Han Thung, Pew-Thian Yap, Jaime Gateno, James J. Xia*, Dinggang Shen. One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony StructuresIEEE Transactions on Medical Imaging, Vol (39):3, 797-796, 2020.
  12. Jose Dolza, Christian Desrosiers, Li Wang, Jing Yuan, Dinggang Shen, Ismail Ben Ayed. Deep CNN ensembles and suggestive annotations for infant brain MRI segmentationComputerized Medical Imaging and Graphics, 79:101660, 2019.
  13. Li Wang, Dong Nie, Guannan Li, Élodie Puybareau, Jose Dolz, Qian Zhang, Fan Wang, Jing Xia, Zhengwang Wu, Jiawei Chen, Kim-Han Thung, Toan Duc Bui, Jitae Shin, Guodong Zeng, Guoyan Zheng, Vladimir S. Fonov, Andrew Doyle, Yongchao Xu, Pim Moeskops, Josien P.W. Pluim, Christian Desrosiers, Ismail Ben Ayed, Gerard Sanroma, Oualid M. Benkarim, Adrià Casamitjana, Verónica Vilaplana, Weili Lin, Gang Li, Dinggang Shen. “Benchmark on Automatic 6-month-old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge, IEEE Transactions on Medical Imaging, 38(9):2219-2230, 2019.
  14. Deqiang Xiao, Chunfeng Lian, Li Wang, Hannah Deng, Kim-Han Thung, Jihua Zhu, Peng Yuan, Leonel Perez, Jr. Jaime Gateno, Pew-Thian Yap, James J. Xia, Dinggang Shen. Estimating Reference Shape Model for Personalized Surgical Reconstruction of Craniomaxillofacial Defects, IEEE Transactions on Biomedical Engineering, 2020.
  15. Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces from 3D Intraoral Scanners, IEEE Transactions on Medical Imaging, 2020.
  16. Dingna Duan, Shunren Xia, Islem Rekik, Zhengwang Wu, Li Wang, Weili Lin, John H Gilmore, Dinggang Shen, Gang Li. Individual Identification and Individual Variability Analysis Based on Cortical Folding Features in Developing Infant Singletons and Twins, Human Brain Mapping, 2020.
  17. Jun Zhang, Mingxia Liu, Li Wang, Si Chen, Peng Yuan, Jianfu Li, Steve Guo-Fang Shen, Zhen Tang, Ken-Chung Chen, James J. Xia, Dinggang Shen. Context-Guided Fully Convolutional Networks for Joint Craniomaxillofacial Bone Segmentation and Landmark Digitization, Medical Image Analysis, 2019.
  18. Jose Dolza, Christian Desrosiers, Li Wang, Jing Yuan, Dinggang Shen, Ismail Ben Ayed. Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation, Computerized Medical Imaging and Graphics, 79:101660, 2019.
  19. Xu Chen, Chunfeng Lian, Li Wang, Hannah Deng, Steve H. Fung, Dong Nie, Kim-Han Thung, Pew-Thian Yap, Jaime Gateno, James J. Xia*, Dinggang Shen. One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures, IEEE Transactions on Medical Imaging, 2019.
  20. Jessica B Girault, Emil Cornea, Barbara D Goldman, Shaili C Jha, Veronica A Murphy, Gang Li, Li Wang, Dinggang Shen, Rebecca C Knickmeyer, Martin Styner, John H Gilmore. Cortical Structure and Cognition in Infants and Toddlers, Cerebral Cortex, bhz126, 2019.
  21. Sahar Ahmad, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Pew-Thian Yap*, Dinggang Shen. Surface-Constrained Volumetric Registration for the Early Developing Brain, Medical Image Analysis, 58:101540, 2019.
  22. Fan Wang, Chunfeng Lian, Zhengwang Wu, Han Zhang, Tengfei Li, Yu Meng, Li Wang, Weili Lin, Dinggang Shen, Gang Li. Developmental Topography of Cortical Thickness during Infancy, PNAS, 2019.
  23. Jing Xia, Fan Wang, Zhengwang Wu, Li Wang, Caiming Zhang, Dinggang Shen, Gang Li. Mapping Hemispheric Asymmetries of the Macaque Cerebral Cortex during Early Brain Development, Human Brain Mapping, 41(1):95-106, 2019.
  24. Liang Sun, Daoqiang Zhang, Chunfeng Lian, Li Wang, Zhengwang Wu, Wei Shao, Weili Lin, Dinggang Shen, Gang Li. Topological Correction of Infant White Matter Surfaces Using Anatomically Constrained Convolutional Neural Network, NeuroImage, 198:114-124, 2019.
  25. Zhengwang Wu, Li Wang, Weili Lin, John H. Gilmore, Gang Li*, Dinggang Shen. Construction of 4D Infant Cortical Surface Atlases with Sharp Folding Patterns via Spherical Patch-based Group-wise Sparse Representation, Human Brain Mapping, 40(13):3860-3880, 2019.
  26. Yongqin Zhang, Pew-Thian Yap, Geng Chen, Weili Lin, Li Wang, Dinggang Shen. Super-Resolution Reconstruction of Neonatal Brain Magnetic Resonance Images via Residual Structured Sparse Representation, Medical Image Analysis, 55:76-87, 2019.
  27. Hancan Zhu, Feng Shi, Li Wang, Sheng-Che Hung, Meng-Hsiang Chen, Shuai Wang, Weili Lin Dinggang Shen. Dilated Dense U-net for Infant Hippocampus Subfield Segmentation, Frontiers in Neuroinformatics, 13:30, 2019.
  28. Li Wang, Gang Li, Ehsan Adeli, Mingxia Liu, Zhengwang Wu, Yu Meng, Weili Lin, Dinggang Shen. Anatomy-guided Joint Tissue Segmentation and Topological Correction for 6-month Infant Brain MRI with Risk of Autism, Human Brain Mapping, 2018.
  29. Brittany R. Howell*, Martin A. Styner*, Wei Gao*, Pew-Thian Yap*, Li Wang*, Kristine Baluyot*, Essa Yacoub*, Geng Chen, Keith Jamison, Taylor Potts, Andrew Salzwedel, Gang Li, John H. Gilmore, Joseph Piven, J. Keith Smith, Dinggang Shen, Kamil Ugurbil, Hongtu Zhu, Weili Lin, Jed T. Elison. The UNC/UMN Baby Connectome Project (BCP): An Overview of the Study Design and Protocol Development, Neuroimage, 2018. *Equal contribution
  30. Gang Li*, Li Wang*, Pew-Thian Yap*, Fan Wang, Zhengwang Wu, Yu Meng, Pei Dong, Jaeil Kim, Feng Shi, Islem Rekik, Weili Lin, Dinggang Shen. Computational Neuroanatomy of Baby Brains: A Review, Neuroimage, 2018. *Equal contribution
  31. Dong Nie, Roger Trullo, Jun Lian, Li Wang, Caroline Petitjean, Su Ruan, Qian Wang, Dinggang Shen. Medical Image Synthesis with Deep Convolutional Adversarial Networks, IEEE Transactions on Biomedical Engineering, 2018.
  32. Yu Meng, Gang Li, Li Wang, Weili Lin, John H Gilmore, Dinggang Shen. Discovering Cortical Sulcal Folding Patterns in Neonates Using Large-scale Dataset, Human Brain Mapping, 2018.
  33. Qingbo Yin, Sheng-Che Hung, W. Kimryn Rathmell, Liran Shen, Li Wang, Weili Lin, Julia R. Fielding, Amir H. Khandani, Michael E. Woods, Matthew I. Milowsky, Samira A. Brooks, Eric. M. Wallen, Dinggang Shen. Integrative Radiomics Expression Predicts Molecular Subtypes of Primary Clear Cell Renal Cell Carcinoma, Clinical Radiology, 2018.
  34. Dong Nie, Li Wang, Ehsan Adeli, Cuijing Lao, Weili Lin, Dinggang Shen. 3D Fully Convolutional Networks for Multi-Modal Isointense Infant Brain Image Segmentation, IEEE Transactions on Cybernetics, 2018.
  35. Yongqin Zhang, Feng Shi, Jian Cheng, Li Wang, Pew-Thian Yap, Dinggang Shen. Longitudinally Guided Super-Resolution of Neonatal Brain Magnetic Resonance Images, IEEE Transactions on Cybernetics, 2017.
  36. Zhensong Wang, Lifang Wei, Li Wang, Yaozong Gao, Wufan Chen, Dinggang Shen. Hierarchical Vertex Regression Based Segmentation of Head and Neck CT Images for Radiotherapy Planning, IEEE Transactions on Image Processing, 2017.
  37. Lifang Wei*, Xiaohuan Cao*, Zhensong Wang, Yaozong Gao, Shunbo Hu, Li Wang, Guorong Wu, Dinggang Shen. Learning-based Deformable Registration for Infant MRI by Integrating Random Forest with Auto-Context Model, Medical Physics, 2017. *Co-first authors.
  38. Qingbo Yin, Sheng-Che Hung, Li Wang, Weili Lin, Julia R. Fielding, W. Kimryn Rathmell, Amir H. Khandani, Michael E. Woods, Matthew I. Milowsky, Samira A. Brooks, Eric. M. Wallen, Dinggang Shen. Associations between Tumor Vascularity, Vascular Endothelial Growth Factor Expression and PET/MRI Radiomic Signatures in Primary Clear-Cell-Renal-Cell-Carcinoma: Proof-of-Concept Study, Scientific Reports, 7:43356, 2017.
  39. Yulian Zhu, Li Wang, Mingxia Liu, Chunjun Qian, Ambereen Yousuf, Aytekin Oto, Dinggang Shen. MRI Based Prostate Cancer Detection with High-level Representation and Hierarchical Classification, Medical Physics, 44(3):1028-1039, 2016.
  40. Jeong Chul Kim, Li Wang, Dinggang Shen, Weili Lin. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory, Scientific Reports, 6:37666, 2016.
  41. Li Wang, Yaozong Gao, Feng Shi, Gang Li, Ken Chung Chen, Zhen Tang, James J Xia, Dinggang Shen. Automated Segmentation of Dental CBCT Image with Prior-guided Sequential Random Forests, Medical Physics, 43, 336, 2016.
  42. Jeong Chul Kim, Li Wang, Dinggang Shen, Weili Lin. Biomechanical Analysis of Normal Brain Development during the First Year of Life Using Finite Strain Theory, Scientific Reports, 6, 37666, 2016.
  43. Minghui Deng, Renping Yu, Li Wang, Feng Shi, Pew-Thian Yap, Dinggang Shen. Learning-based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling, Medical Physics, 43(12), 6588–6597, 2016.
  44. Yuyao Zhang, Feng Shi, Guorong Wu, Li Wang, Pew-Thian Yap, Dinggang Shen. Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains, IEEE Transactions on Medical Imaging, 5(12), 2568-2577, 2016.
  45. Pei Dong, Li Wang, Weili Lin, Dinggang Shen, Guorong Wu. Scalable Joint Segmentation and Registration Framework for Infant Brain Images, Neurocomputing, 11, 2016.
  46. Chunjun Qian, Li Wang, Yaozong Gao, Ambereen Yousuf, Xiaoping Yang, Aytekin Oto, Dinggang Shen. In Vivo MRI based Prostate Cancer Localization with Random Forests and Auto-context Model, Computerized Medical Imaging and Graphics, 52, 44-57, 2016.
  47. Xiujuan Geng, Gang Li, Zhaohua Lu, Wei Gao, Li Wang, Dinggang Shen, Hongtu Zhu, John H Gilmore. Structural and Maturational Covariance in Early Childhood Brain Development, Cerebral Cortex, Feb 2016.
  48. Li Wang, Yaozong Gao , Feng Shi , Gang Li , Ken Chung Chen , Zhen Tang , James J Xia , Dinggang Shen, “Automated Segmentation of Dental CBCT Image with Prior-guided Sequential Random Forests“, accepted by Medical Physics, 2015.
  49. Li Wang, Yi Ren, Yaozong Gao, Zhen Tang, Ken-Chung Chen, Jiangu Li, Steve GF Shen, Jin Yan, Philip K.M. Lee, Ben Chow, James J. Xia, Dinggang Shen, “Estimating Patient-Specific and Anatomically-Correct Reference Model for Craniomaxillofacial Deformity via Sparse Representation“, accepted by Medical Physics, 2015.
  50. Xiaofeng Zhu, Heung-Il Suk, Li Wang, Seong-Whan Lee, Dinggang Shen, “A Novel Relational Regularization Feature Selection Method for Joint Regression and Classification in AD Diagnosis”, accepted by Medical Image Analysis, 2015.
  51. Tri Huynh, Yaozong Gao, Jiayin Kang, Li Wang, Pei Zhang, Jun Lian, Dinggang Shen]”Estimating CT Image from MRI Data Using Structured Random Forest and Auto-context Model”, IEEE Trans. On Medical Imaging, 2015.
  52. Gang Li, Li Wang, Feng Shi, John H. Gilmore, Weili Lin, Dinggang Shen], Construction of 4D High-definition Cortical Surface Atlases of Infants: Methods and Applications”, Medical Image Analysis, 2015.
  53. Feng Shi, Jian Cheng, Li Wang, Pew-Thian Yap, Dinggang Shen, “LRTV: MR Image Super-Resolution with Low-Rank and Total Variation Regularizations”, accepted by IEEE Trans. On Medical Imaging, 2015.
  54. Li Wang, Yaozong Gao, Feng Shi, Gang Li, John H. Gilmore, Weili Lin, Dinggang Shen. LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images, Neuroimage, 108, 160-172, 2015. [PDF]
  55. Wenlu Zhang, Rongjian Li, Houtao Deng, Li Wang, Weili Lin, Shuiwang Ji, Dinggang Shen. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation, accepted by Neuroimage, 2014.
  56. Gang Li, Li Wang, Feng Shi, Amanda E Lyall, Weili Lin, John H Gilmore, Dinggang Shen. Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age, The Journal of Neuroscience, 34(12),4228-4238, 2014. (Highlighted in the National Institute of Mental Health (NIMH) strategic plan 2015-2020)
  57. Li Wang, Feng Shi, Yaozong Gao, Gang Li, John H. Gilmore, Weili Lin, Dinggang Shen. Integration of Sparse Multi-modality Representation and Anatomical Constraint for Isointense Infant Brain MR Image Segmentation, Neuroimage, 89, 152-164, 2014.[PDF][Code will be released soon].
  58. Li Wang, Feng Shi, Gang Li, Yaozong Gao, Weili Lin, John H. Gilmore, Dinggang Shen. Segmentation of Neonatal Brain MR Images using Patch-Driven Level Sets, Neuroimage, 84, 141-158, 2014. [PDF][PPT][Matlab Source Code] (Most Downloaded Article).
  59. Li Wang, Ken Chung Chen, Yaozong Gao, Feng Shi, Shu Liao, Gang Li, Steve GF Shen, Jin Yan, Philip KM Lee, Ben Chow, Nancy X Liu, James J Xia, Dinggang Shen. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization, 41 (4), 043503 Medical Physics, 2014.
  60. Gang Li, Li Wang, Feng Shi, Amanda E. Lyall, Mihye Ahn, Ziwen Peng, Hongtu Zhu, Weili Lin, John H. Gilmore, Dinggang Shen. Cortical Thickness and Surface Area in Neonates at High Risk for Schizophrenia, accepted for Brain Structure and Function, 2014.
  61. Feng Shi, Li Wang, Guorong Wu, Gang Li, John H Gilmore, Weili Lin, Dinggang Shen. Neonatal atlas construction using sparse representation, accepted for Human Brain Mapping, 2014.
  62. Amanda E Lyall, Feng Shi, Xiujuan Geng, Sandra Woolson, Gang Li, Li Wang, Robert M Hamer, Dinggang Shen, John H Gilmore, Dynamic development of regional cortical thickness and surface area in early childhood, accepted by Cereb. Cortex, 2014.
  63. Gang Li, Jingxin Nie, Li Wang, Feng Shi, Amanda E. Lyall, Weili Lin, John H. Gilmore, and Dinggang Shen. Mapping Longitudinal Hemispheric Structural Asymmetries of the Human Cerebral Cortex From Birth to 2 Years of Age, 24(5), 1289-1300, Cereb. Cortex, 2014.
  64. Gang Li, Li Wang, Feng Shi, Weili Lin, Dinggang Shen. Simultaneous and Consistent Labeling of Longitudinal Dynamic Developing Cortical Surfaces in Infants, accepted for Medical Image Analysis, 2014.
  65. Li Wang, Feng Shi, Pew-Thian Yap, Weili Lin, John H. Gilmore, Dinggang Shen. Longitudinally guided level sets for consistent tissue segmentation of neonates, Human Brain Mapping, 34(4), 956-972, 2013.[PDF][BibTex][Infant processing software].
  66. Chong-Yaw Wee, Li Wang, Feng Shi, Pew-Thian Yap, Dinggang Shen. Diagnosis of Autism Spectrum Disorders Using Regional and Interregional Morphological Features, Human Brain Mapping, 2013.
  67. Li Wang, Feng Shi, Gang Li, Dinggang Shen. 4D Segmentation of Brain MR Images with Constrained Cortical Thickness Variation, PLOS ONE 8(7): e64207, 2013.
  68. Li Wang, Feng Shi, Pew-Thian Yap, John H. Gilmore, Weili Lin, Dinggang Shen. 4D Multi-Modality Tissue Segmentation of Serial Infant Images, PLOS ONE, 7(9), e44596, 2012. [PDF] [Infant processing software].
  69. Feng Shi, Li Wang, Ziwen Peng, Chong-Yaw Wee, and Dinggang Shen. Altered Modular Organization of Structural Cortical Networks in Children with Autism, PLOS ONE 8(5): e63131, 2013.
  70. Yakang Dai, Yaping Wang, Li Wang, Guorong Wu, Feng Shi, Dinggang Shen. aBEAT: A Toolbox for Consistent Analysis of Longitudinal Adult Brain MRI, PLOS ONE 8(4): e60344, 2013.
  71. Minjeong Kim, Guorong Wu, Wei Li, Li Wang, Young-Don Son, Zang-Hee Cho, Dinggang Shen. Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models, Neuroimage, 83, 335-345, 2013.
  72. Yakang Dai, Feng Shi, Li Wang, Guorong Wu, Dinggang Shen. iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing, Neuroinformatics, 11(2), 211-225, 2013.
  73. Gang Li, Jingxin Nie, Li Wang, Feng Shi, Weili Lin, John H. Gilmore, Dinggang Shen. Mapping Region-specific Longitudinal Cortical Surface Expansion from Birth to 2 Years Old, accepted for Cerebral Cortex, 23(11), 2724-2733, 2013.
  74. Feng Shi, Li Wang, Yakang Dai, John H Gilmore, Weili Lin, Dinggang Shen. LABEL: Pediatric Brain Extraction Using Learning-based Meta-algorithm, Neuroimage 62(3): 1975-1986, Sep. 2012.
  75. Jingxin Nie, Gang Li, Li Wang, John H. Gilmore, Weili Lin, Dinggang Shen. Computational Growth Model for Measuring Dynamic Cortical Development in the First Year of Life, Cerebral Cortex, 22(10), 2772-2284, 2012.
  76. Li Wang, Feng Shi, Weili Lin, John H. Gilmore, Dinggang Shen. Automatic Segmentation of Neonatal Images Using Convex Optimization and Coupled Level Sets, NeuroImage, 58:805-817, 2011. [PDF][BibTex][Infant processing software].
  77. Lei He, Songfeng Zheng, Li Wang. Integrating local distribution information with level set for boundary extraction, Journal of Visual Communication and Image Representation, 21 (4), 343-354, 2010.
  78. Li Wang, Yunjie Chen, Zhaohua Ding, Deshen Xia. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy, Journal of Neuroscience Methods, 188(2), 2010, p.316-325.
  79. Li Wang, Lei He, Arabinda Mishra, Chunming Li. Active Contours Driven by Local Gaussian Distribution Fitting Energy. Signal Processing, 89(12), 2009,p. 2435-2447 [PDF][BibTex][Matlab Source Code](Most Cited Signal Processing Articles).
  80. Li Wang, Chunming Li, Quansen Sun, Deshen Xia, Chiu-Yen Kao. Active contours driven by local and global intensity fitting energy with application to brain MR images segmentation, Computerized Medical Imaging and Graphics, 33(7), 520-531, 2009 [PDF][BibTex] Top 25 Hottest Articles (Most Cited Computerized Medical Imaging and Graphics Articles.)
  81. Li Wang, Yunjie Chen, Zhihui Wei, Pheng-ann Heng, Deshen Xia. A Novel Model for Brain MR Images Segmentation In the Presence of Intensity Inhomogeneity. Journal of Computer-Aided Design and Computer Graphics. 21 (11), p.1624-1631, 2009, (in Chinese).
  82. Li Wang, Yunjie Chen, Yang Tang, Zhihui Wei, Pheng-ann Heng, Deshen Xia. A Brain MR Images De-bias Model Based on Genetics Algorithm, Journal of Image and Graphics, 10(11), p.2181-1286, 2008, (in Chinese).

 

Selected Publication–Conferences

 

  1. “Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Dan Hu, Fan Wang, Han Zhang, Zhengwang Wu, Li Wang, Weili Lin, Gang Li*, Dinggang Shen*, and the UNC/UMN Baby Connectome Project Consortium] *Co-corresponding authors
  2. “Joint Image Quality Assessment and Brain Extraction of Fetal MRI using Deep Learning”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Lufan Liao, Xin Zhang, Fenqiang Zhao, Tao Zhong, Yuchen Pei, Xiangmin Xu, Li Wang, He Zhang, Dinggang Shen, Gang Li]
  3. “A computational framework for dissociating development-related from individually variable flexibility in regional modularity assignment in early infancy”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020, [Mayssa Soussia, Xuyun Wen, Zhen Zhou, Bing Jin, Tae-Eui Kam, Li-Ming Hsu, Zhengwang Wu, Gang Li, Li Wang, Islem Rekik, Weili Lin, Dinggang Shen, Han Zhang*, and the UNC/UMN Baby Connectome Project Consortium]
  4. “Construction of Spatiotemporal Infant Cortical Surface Functional Templates”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Ying Huang, Fan Wang, Zhengwang Wu, Zengsi Chen, Han Zhang, Li Wang, Weili Lin, Dinggang Shen, Gang Li, and the UNC/UMN Baby Connectome Project]
  5. “Domain-invariant Prior Knowledge Guided Attention Networks for Robust Skull Stripping of Developing Macaque Brains”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Tao Zhong, Yu Zhang, Fenqiang Zhao, Yuchen Pei, Lufan Liao, Zhenyuan Ning, Li Wang, Dinggang Shen, Gang Li]
  6. “Multi-Task Dynamic Transformer Network for Concurrent Bone Segmentation and Large-Scale Landmark Localization with Dental CBCT”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Chunfeng Lian, Fan Wang, Han Deng, Li Wang, Deqiang Xiao, Tianshu Kuang, Hung-Ying Lin, Jaime Gateno, Steve G. F. Shen, Pew-Thian Yap, James J. Xia*, Dinggang Shen*] *Co-corresponding authors
  7. “Infant Cognitive Scores Prediction With Multi-stream Attention-based Temporal Path Signature Features”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Xin Zhang, Jiale Cheng, Hao Ni, Chenyang Li, Xiangmin Xu, Zhengwang Wu, Li Wang, Weili Lin, Dinggang Shen, Gang Li]
  8. “A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation”, MICCAI 2020, Lima, Peru, Oct 4-8, 2020. [Liangjun Chen, Zhengwang Wu, Dan Hu, Ya Wang, Zhanhao Mo, Weili Lin, Li Wang, Dinggang Shen, Gang Li, and the UNC/UMN Baby Connectome Project Consortium]
  9. “7T guided 3T Brain Tissue Segmentation Using Cascaded Nested Network”, The IEEE International Symposium on Biomedical Imaging (ISBI), Iowa City, USA, Apr. 3-7, 2020. [Jie Wei, Duc Toan Bui, Zhengwang Wu, Li Wang, Yong Xia, Gang Li, Dinggang Shen]
  10. “6-month Infant Brain MRI Segmentation Guided By 24-month Data Using Cycle-Consistent Adversarial Networks”, The IEEE International Symposium on Biomedical Imaging (ISBI), Iowa City, USA, Apr. 3-7, 2020. [Duc Toan Bui, Li Wang, Weili Lin, Gang Li, Dinggang Shen]
  11. “Siamese verification framework for Autism identification during infancy using cortical path signature features”, The IEEE International Symposium on Biomedical Imaging (ISBI), Iowa City, USA, Apr. 3-7, 2020. [Xin Zhang, Xinyao Ding, Zhengwang Wu, Jing Xia, Hao Ni, Xiangmin Xu, Lufan Liao, Li Wang, Gang Li]
  12. Discriminative-Region-Aware Residual Network for Adolescent Brain Structure and Cognitive Development Analysis”, GLMI 2019, Shenzhen, China, Oct. 17, 2019. [Yongsheng Pan, Mingxia Liu*, Li Wang, Yong Xia*, Dinggang Shen*] *Co-corresponding authors
  13. Automatic Detection of Craniomaxillofacial Anatomical Landmarks on CBCT Images using 3D Mask R-CNN”, GLMI 2019, Shenzhen, China, Oct. 17, 2019. [Yankun Lang, Li Wang, Pew-Thian Yap, Chunfeng Lian, Hannah Deng, Kim-Han Thung, Deqiang Xiao, Peng Yuan, Steve G.F. Shen, Jaime Gateno, Tianshu Kuang, David M. Alfi, James J. Xia, Dinggang Shen]
  14. A Longitudinal MRI Study of Amygdala and Hippocampal Subfields for Infants with Risk of Autism”, GLMI 2019,Shenzhen, China, Oct 17, 2019. [Guannan Li, Meng-Hsiang Chen, Gang Li, Di Wu, Chunfeng Lian, Quansen Sun, Dinggang Shen*, Li Wang*] *Co-corresponding authors
  15. CNS: CycleGAN-assisted Neonatal Segmentation Model for Cross-Datasets”, GLMI 2019,Shenzhen, China, Oct 17, 2019. [Jian Chen,  Zhenghan Fang, Deqiang Xiao, Duc Toan Bui, Kim-Han Thung, Xianjun Li, Jian Yang, Weili Lin, Gang Li, Dinggang Shen*, Li Wang*] *Co-corresponding authors
  16. Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance”, MIL 2019,Shenzhen, China, Oct 17, 2019. [Duc Toan Bui, Li Wang, Jian Chen, Jian Yang, Weili Lin, Gang Li*, Dinggang Shen*] *Co-corresponding authors (Oral)
  17. End-to-End Dementia Status Prediction from Brain MRI using Multi-Task Weakly-Supervised Attention Network”, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Chunfeng Lian, Mingxia Liu*, Li Wang, Dinggang Shen*] * Co-corresponding authors
  18. MeshSNet: Deep Multi-Scale Mesh Feature Learning for End-to-End Tooth Labeling on 3D Dental Surfaces”,MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Chunfeng Lian, Li Wang*, Tai-Hsien Wu, Mingxia Liu*, Francisca Durán, Ching-Chang Ko, Dinggang Shen*] * Co-corresponding authors
  19. Estimating Reference Bony Shape Model for Personalized Surgical Reconstruction of Posttraumatic Facial Defects”, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Deqiang Xiao, Li Wang, Hannah Deng, Kim-Han Thung, Jihua Zhu, Peng Yuan, Yriu L. Rodrigues, Leonel Perez, Jr., Christopher E. Crecelius, Jaime Gateno, Tiansku Kuang, Steve G.F. Shen, Daeseung Kim, David M. Alfi, Pew-Thian Yap, James J. Xia*, Dinggang Shen*] * Co-corresponding authors
  20. Intrinsic Patch-based Cortical Anatomical Parcellation using Graph Convolutional Neural Network on Surface Manifold”, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Zhengwang Wu, Fenqiang Zhao, Jing Xia, Li Wang, Gang Li*, Dinggang Shen*] * Co-corresponding authors
  21. Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brains”, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Sahar Ahmad, Zhengwang Wu, Gang Li, Li Wang, Weili Lin, Pew-Thian Yap*, Dinggang Shen*, and the UNC/UMN Baby Connectome Project Consortium] * Co-corresponding authors
  22. Harmonization of Infant Cortical Thickness using Surface-to-Surface Cycle-Consistent Adversarial Networks”, MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Fenqiang Zhao, Zhengwang Wu, Li Wang, Weili Lin, Shunren Xia, Dinggang Shen, Gang Li] (Oral)
  23. Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties”,MICCAI 2019, Shenzhen, China, Oct 13-17, 2019. [Fan Wang, Chunfeng Lian, Zhengwang Wu, Li Wang, John Gilmore, Weili Lin, Dinggang Shen, Gang Li]
  24. Spherical U-Net on Cortical Surfaces: Methods and Applications”, Information Processing in Medical Imaging (IPMI), June 2-7, 2019, HKUST, Hong Kong. [Fenqiang Zhao, Shunren Xia, Zhengwang Wu, Dingna Duan, Li Wang, Weili Lin, John Gilmore, Dinggang Shen, Gang Li]
  25. A Preliminary Volumetric MRI Study of Amygala and Hippocampal Subfields in Autism During Infancy”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Guannan Li, Meng-Hsiang Chen, Gang Li, Di Wu, Quansen Sun, Dinggang Shen, Li Wang] (Oral)
  26. FRNET: Flattened Residual Network for Infant MRI Skull Stripping”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Qian Zhang, Li Wang, Xiaopeng Zong, Weili Lin, Gang Li, Dinggang Shen] (Oral)
  27. Charting Development-Based Joint Parcellation Maps of Human and Macaque Brains During Infancy”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Jing Xia, Fan Wang, Zhengwang Wu, Li Wang, Caiming Zhang, Weili Lin, Dinggang Shen, Gang Li]
  28. Spherical U-Net for Infant Cortical Surface Parcellation”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Fenqiang Zhao, Shunren Xia, Zhengwang Wu, Li Wang, Weili Lin, John H. Gilmore, Dinggang Shen, Gang Li] (Oral)
  29. Cortical Folding Prints for Infant Identification”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Dingna Duan, Shunren Xia, Zhengwang Wu, Fan Wang, Li Wang, Weili Lin, John H. Gilmore, Dinggang Shen, Gang Li]
  30. Construction of 4D Neonatal COrtical Surface Atlases Using Wasserstein Distance”, The IEEE International Symposium on Biomedical Imaging (ISBI), Venice, Italy, Apr. 8-11, 2019. [Zengsi Chen, Zhengwang Wu, Liang Sun, Fan Wang, Li Wang, Weili Lin, John H. Gilmore, Dinggang Shen, Gang Li] (Oral)
  31. Difficulty-Aware Attention Network with Confidence Learning for Medical Image Segmentation”, AAAI 2019, Honolulu, Hawaii, Jan. 27-Feb. 1, 2019. [Dong Nie, Li Wang, Lei Xiang, Sihang Zhou, Ehsan Adeli, Dinggang Shen]
  32. Topological Correction of Infant Cortical Surfaces Using Anatomically Constrained U-Net”, MLMI 2018 (MICCAI Workshop), Granada, Spain, Sep. 16, 2018. [Liang Sun, Daoqiang Zhang, Li Wang, Wei Shao, Weili Lin,  Dinggang Shen, Gang Li]
  33. Early Automatic Classification of MR Scans of Autism Disease by Multi-Channel CNNs”, MLMI 2018 (MICCAI Workshop), Granada, Spain, Sep. 16, 2018. [Guannan Li, Mingxia Liu, Quansen Sun, Dinggang Shen, Li Wang]
  34. Automatic Accurate Infant Cerebellar Tissue Segmentation with Densely Connected Convolutional Network”, MLMI 2018 (MICCAI Workshop), Granada, Spain, Sep. 16, 2018. [Jiawei Chen, Han Zhang, Dong Nie, Li Wang, Gang Li, Weili Lin, Dinggang Shen]
  35. Deep Learning based Inter-Modality Image Registration Supervised by Intra-Modality Similarity”, MLMI 2018 (MICCAI Workshop), Granada, Spain, Sep. 16, 2018. [Xiaohuan Cao, Jianhua Yang, Li Wang, Zhong Xue, Qian Wang, Dinggang Shen]
  36. Fine-Grained Segmentation Using Hierarchical Dilated Neural Networks”, MICCAI 2018, Granada, Spain, Sep. 16-20, 2018. [Sihang Zhou, Dong Nie, Ehsan Adeli, Yaozong Gao, Li Wang, Jianping Yin, Dinggang Shen]
  37. Volume-based Analysis of 6-month-old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis”, MICCAI 2018, Granada, Spain, Sep. 16-20, 2018. [Li Wang*, Gang Li, Feng Shi, Xiaohuan Cao, Chunfeng Lian, Dong Nie, Mingxia Liu, Han Zhang, Guannan Li, Weili Lin, Dinggang Shen*] * Co-corresponding authors. [Code: Caffe prototxt]
  38. LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images”, MICCAI Workshop on Medical Computer Vision: Algorithms for Big Data (bigMCV 2016), Athens, Greece, Oct. 21, 2016. [Li Wang, Yaozong Gao, Gang Li, Feng Shi, Weili Lin, Dinggang Shen]
  39. Isointense Infant Brain Segmentation by Stacked Kernel Canonical Correlation Analysis”, MICCAI Workshop on Patch-based Techniques in Medical Imaging (Patch-MI), Munich, Germany, Oct. 9, 2015. [Li Wang, Feng Shi, Yaozong Gao, Gang li, Weili Lin, Dinggang Shen]
  40. Automated Segmentation of CBCT Image with Prior-guided Sequential Random Forest“, MICCAI Workshop on Medical Computer Vision: Algorithms for Big Data (bicMCV 2015), Munich, Germany, Oct. 9, 2015. [Li Wang, Yaozong Gao, Feng Shi, Gang Li, James Xia, Dinggang Shen] (Oral Presentation)
  41. Li Wang, Yaozong Gao, Feng Shi, Gang Li, John H. Gilmore, Weili Lin, Dinggang Shen. LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. MICCAI Workshop on Medical Computer Vision: Algorithms for Big Data (bigMCV 2014), Boston, USA. (Oral Presentation, 1st winner in MICCAI NeoBrainS12 Challenge) [PDF] [PPT] [Code will be released soon]
  42. Gang Li, Li Wang, Feng Shi, Weili Lin, Dinggang Shen, “Constructing 4D Infant Cortical Surface Atlases Based on Dynamic Developmental Trajectories of the Cortex”, Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, 89-96 (Oral Presentation).
  43. Yaozong Gao, Li Wang, Yeqin Shao, Dinggang Shen, “Learning Distance Transform for Boundary Detection and Deformable Segmentation in CT Prostate Images”, MICCAI workshop on Machine Learning in Medical Imaging (MLMI) 2014, Boston, USA (Oral Presentation, Best Paper Award).
  44. Yi Ren, Li Wang, Yaozong Gao, Zhen Tang, Ken Chung Chen, Jiafu Li, Steve GF Shen, Jin Yan, Philip K.M. Lee, Ben Chow, James Xia, Dinggang Shen, “Estimating Anatomically-Correct Reference Model for Craniomaxillofacial Deformity via Sparse Representation”, MICCAI 2014, Boston, USA, Sep. 14-18, 2014.
  45. Xuchu Wang, Li Wang, HI Suk, Dinggang Shen, “Online Discriminative Multi-atlas Learning for Isointense Infant Brain Segmentation”, MICCAI workshop on Machine Learning in Medical Imaging (MLMI) 2014, Boston, USA, 297-305.
  46. Chunjun Qian, Li Wang, Ambereen Yousuf, Aytekin Oto, Dinggang Shen,”In Vivo MRI Based Prostate Cancer Identification with Random Forests and Auto-context Model” MICCAI workshop on Machine Learning in Medical Imaging (MLMI) 2014, Boston, USA, 314-322 (Oral Presentation).
  47. Qian Wang, Guorong Wu, Li Wang, Pengfei Shi, Weili Lin, Dinggang Shen Sparsity-Learning-Based Longitudinal MR Image Registration for Early Brain Development MICCAI workshop on Machine Learning in Medical Imaging (MLMI) 2014, Boston, USA, 1-8.
  48. Li Wang, Ken Chung Chen, Feng Shi, Shu Liao, Gang Li, Yaozong Gao, Steve GF Shen, Jin Yan, Philip K.M. Lee, Ben Chow, Nancy X. Liu, James J. Xia, Dinggang Shen. Automated segmentation of CBCT image using spiral CT atlases and convex optimization, In: Proceedings of medical image computing and computer aided intervention (MICCAI) 2013, Nagoya, Japan, Sep. 22-26, 2013.
  49. Li Wang, Feng Shi, Gang Li, John H. Gilmore, Weili Lin, Dinggang Shen. Integration of Sparse Multi-modality Representation and Geometrical Constraint for Isointense Infant Brain Segmentation, In: Proceedings of medical image computing and computer aided intervention (MICCAI) 2013, Nagoya, Japan, Sep. 22-26, 2013.
  50. Gang Li, Li Wang, Feng Shi, Weili Lin, Dinggang Shen. Multi-Atlas Based Simultaneous Labeling of Longitudinal Dynamic Cortical Surfaces in Infants, In: Proceedings of medical image computing and computer aided intervention (MICCAI) 2013, Nagoya, Japan, Sep. 22-26, 2013 (Oral Presentation).
  51. Feng Shi, Jian Cheng, Li Wang, Pew-Thian Yap, and Dinggang Shen. Low-Rank Total Variation for Image Super-Resolution, In: Proceedings of medical image computing and computer aided intervention (MICCAI) 2013, Nagoya, Japan, Sep. 22-26, 2013.
  52. Li Wang, Feng Shi, Gang Li, Weili Lin, John H. Gilmore, Dinggang Shen. Patch-driven Neonatal Brain MRI Segmentation with Sparse Representation and Level Sets, In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI) 2013, San Francisco, California, USA, Apr. 7-11, 2013 (Oral Presentation)[PDF][PPT]
  53. Gang Li, Jingxin Nie, Li Wang, Feng Shi, John H. Gilmore, Weili Lin, Dinggang Shen. Measuring Longitudinally Dynamic Cortex Development in Infants by Reconstruction of Consistent Cortical Surfaces, In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI) 2013, San Francisco, California, USA, Apr. 7-11, 2013.
  54. Weili Lin, Li Wang, Gang Li, Feng Shi, Jingxin Nie, Dinggang Shen. Quantitative Assessments of Growth Trajectories of Cortical Thickness During the First 18 Mons of Life, In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM)’13, Salt Lake City, Utah, USA, Apr 20-26, 2013.
  55. Weili Lin, Wei Gao, Feng Shi, Li Wang, Gang Li, Jingxin Nie, Hongtu Zhu, Dinggang Shen. Coordinated Anatomical Growth of Motor, Sensory, and Visual Networks in Early Infancy, In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM)’13, Salt Lake City, Utah, USA, Apr 20-26, 2013.
  56. Feng Shi, Li Wang, Ziwen Peng, Chong-Yaw Wee, and Dinggang Shen. Revealing Morphological Connectome Alterations in Autistic Brain, In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM)’13, Salt Lack City, Utah, USA, Apr. 20-26, 2013 (Oral Presentation).
  57. Hongyu An, Yasheng Chen, Yang Yang, Li Wang, Feng Shi, Dinggang Shen, Lester Kwock, Weili Lin. Profiling regional age dependence of metabolites within human brain during the first year, In: Proceedings of Organization for Human Brain Mapping (OHBM)’12, Beijing, China, Jun. 10-14, 2012.
  58. Jingxin Nie, Gang Li, Li Wang, Feng Shi, Weili Lin, John H. Gilmore, Dinggang Shen. Longitudinal development of cortical thickness correlation network in the first two years of life, In: Proceedings of Organization for Human Brain Mapping (OHBM)’12, Beijing, China, Jun. 10-14, 2012.
  59. Li Wang, Feng Shi, Gang Li, Dinggang Shen. 4D Segmentation of Longitudinal Brain MR Images with Consistent Cortical Thickness Measurement, Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data – Second International Workshop in conjunction with MICCAI 2012, Nice, France, Oct. 1, 2012.
  60. Jingxin Nie, Gang Li, Li Wang, John H. Gilmore, Weili Lin, and Dinggang Shen. Computational Growth Model for Cortical Development in the First Year of Life, Image Analysis of Human Brain Development (IAHBD) in conjunction with MICCAI 2011, Toronto, Canada, Sep. 22, 2011.
  61. Minjeong Kim, Guorong Wu, Wei Li, Li Wang, Young-Don Son, Zang-Hee Cho, and Dinggang Shen. Segmenting Hippocampus from 7.0 Tesla MR Images by Combining Multiple Atlases and Auto-Context Models, Second International Workshop on Machine Learning in Medical Imaging (MLMI) in conjunction with MICCAI 2011, Toronto, Canada, Sep. 18, 2011.
  62. Feng Shi, Li Wang, John H. Gilmore, Weili Lin, Dinggang Shen. Learning-based Meta-Algorithm for MRI Brain Extraction, In: Proceedings of medical image computing and computer aided intervention (MICCAI) 2011, Toronto, Canada, Sep. 18-22, 2011.
  63. Li Wang, Feng Shi, John H. Gilmore, Weili Lin, Dinggang Shen. Longitudinal guided level-sets for consistent neonatal image segmentation. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM)’11, Montreal, Quebec, Canada, May 7-13, 2011.
  64. Li Wang, Feng Shi, John H. Gilmore, Weili Lin, Dinggang Shen. Automatic Segmentation of Neonatal Images Using Convex Optimization and Coupled Level Set Method. International Workshop on Medical Imaging and Augmented Reality (MIAR) 2010 in conjunction with MICCAI 2010, LNCS, Volume 6326/2010, 1-10, Beijing, China, Sep. 19-20, 2010 (Oral presentation).
  65. Chunming Li, Chris Gatenby, Li Wang, and John Gore. A Robust Parametric Method for Bias Field Estimation and Segmentation of MR Images. In: Proceedings of IEEE conference on Computer Vision and Pattern Recognition (CVPR), 218-223, 2009.
  66. Li Wang, Jim Macione, Quansen Sun, Deshen Xia, Chunming Li. Level set segmentation based on local gaussian distribution fitting, Asian Conference on Computer Vision (ACCV) 293-302, 2009 (Oral presentation).
  67. Li Wang, Chunming Li, Quansen Sun, Deshen Xia, Chiu-Yen Kao. Brain MR image segmentation using local and global intensity fitting active contours/surfaces. In: Proceedings of medical image computing and computer aided intervention (MICCAI), vol. LNCS 524, 619 Part I. 2008. p.384-392.