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Abstract

The human cerebral cortex undergoes dramatic and critical development during early postnatal 

stages. Benefiting from advances in neuroimaging, many infant brain magnetic resonance imaging 

(MRI) datasets have been collected from multiple imaging sites with different scanners and 

imaging protocols for investigation of normal and abnormal early brain development. However, 

it is extremely challenging to precisely process and quantify infant brain development with these 

multi-site imaging data, because infant brain MRIs: a) exhibit extremely low and dynamic tissue 

contrast caused by ongoing myelination and maturation, and b) suffer from large inter-site data 

heterogeneity caused by diverse imaging protocols/scanners across sites. Consequently, existing 

computational tools and pipelines typically perform poorly on infant MRI data. To address these 

challenges, we propose a robust, multi-site-applicable, infant-tailored computational pipeline that 

leverages powerful deep learning techniques. The main functionality of the proposed pipeline 

includes preprocessing, brain skull stripping, tissue segmentation, topology correction, cortical 

surface reconstruction, and measurement. Our pipeline can well handle both T1w and T2w 

structural infant brain MR images in a wide age range (from birth to 6 years of age) and 

is effective for different imaging protocols/scanners, despite being trained only on the data 

from the Baby Connectome Project. Extensive comparisons with existing methods on multi-site, 

multimodal, and multi-age datasets demonstrate superior effectiveness, accuracy, and robustness of 

our pipeline. We have maintained a website iBEAT Cloud1 for users to process their images with 

our pipeline, which has successfully processed 16,000+ infant MRI scans from 100+ institutions 

with various imaging protocols/scanners.
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1. Introduction

The human brain undergoes dynamic growth and expansion during the early postnatal years 

(Garcia et al., 2018; Gilmore et al., 2018; Li et al., 2014, 2019; Lyall et al., 2015; F. Wang et 

al., 2019). During this stage, elementary but critical cognitive skills, e.g., visual perception, 

motion control, expressive and receptive language, and early composite learning abilities, 

develop rapidly along with brain maturation (Shaw et al., 2006). Benefiting from advances 

in pediatric neuroimaging techniques, many large-scale infant brain magnetic resonance 

image (MRI) datasets (Howell et al., 2019; Makropoulos et al., 2018) have been collected 

from multiple institutes with different imaging protocols and scanners, which provides an 

unprecedented opportunity to investigate dynamic and critical early brain development in 

vivo.

The human brain structure is extremely complex, especially for the cerebral cortex, which is 

highly convoluted with huge variability across individuals. Cortical surface-based analysis, 

which explicitly reconstructs topologically correct and geometrically accurate surface 

representations of the highly-folded, thin cerebral cortex, is the preferred approach for 

precisely measuring, integrating, and mapping brain structural, functional, and connectivity 

information from MRI. This is because surface-based analysis respects the topological 

and geodesic properties of the cortex, facilitates accurate alignment, parcellation, and 

visualization of the highly-folded cortical regions, and enables precise measurement of 

multiple biologically distinct cortical properties. Thus, cortical surface-based analysis has 

several advantages that make it ideally suited for revealing the dynamic and complex 

neurobiological changes during early brain development.

Previously, several computational pipelines for cortical surface reconstruction have been 

proposed, for example, a) the FreeSurfer pipeline (Dale et al., 1999; Fischl et al., 1999), 

which is highly effective for adult brain MR image computation; b) the ABCD image 

processing pipeline (Hagler et al., 2019), which is focused on the adolescent brain (from 

9 to 17 years of age); c) the HCP pipeline (Glasser et al., 2013), which is focused on 

the young adult brain and relies on FreeSurfer for cortical surface reconstruction; and 

d) the dHCP image processing pipeline (Makropoulos et al., 2018), which is used for 

handling neonatal brains. However, unlike brain images for the above-mentioned age groups, 

infant brain images have specialized characteristics that introduce unique challenges in 

image processing. First, due to the rapid tissue maturation and undergoing myelination 

process in the infant brain, the appearance of the images varies dramatically with strong 

age-dependency in the first postnatal year, and the corresponding tissue contrast is very 

low. Fig. 1 shows typical T1w and T2w images after intensity inhomogeneity correction 

and their intensity histograms for different tissue types at different ages from the same 

subject with the same imaging protocol. The white matter exhibits higher changes in both 

the T1w and T2w images during the early brain development. As can be seen in the T1w 

images, at the age of 1 month, white matter exhibits lower intensity values than gray matter 

does. From 3 to 9 months of age, the gray matter and white matter have very similar 

intensity ranges. After 9 months, the white matter exhibits higher intensity values than gray 

matter does. Second, available infant images are typically acquired with different scanners 

and imaging protocols at different imaging sites, which leads to extremely heterogeneous 
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imaging appearance across datasets, thus posing a significant challenge to image processing, 

especially for tissue segmentation. For example, Fig. 2 shows three 6-month infant images 

(acquired with different scanners and different imaging protocols). As reported in our 

organized MICCAI grand challenge on 6-month infant brain MRI segmentation for multi-

site data (iSeg-2019, http://iseg2019.web.unc.edu) (Y. Sun et al., 2021), the trained deep 

learning models based on a specific-site dataset generally perform well for testing subjects 

from the same site but poorly for testing subjects from other sites with different imaging 

protocols/scanners due to domain differences, which is known as the “multi-site issue”. In 

addition, due to subject-specific dynamic development, inter-individual variations in size, 

shape, and cortex folding of the infant brain are much larger than those for brains from 

other age groups. Consequently, conventional pipelines, which generally assume consistent 

imaging appearance, high tissue contrast, and less variable brain size, are not suitable for 

the challenging complexities of infant brain imaging. Therefore, an infant dedicated pipeline 

is critically needed to handle the challenges of extremely low tissue contrast, dynamic 

appearance and shape, and inter-site heterogeneity.

In 2012, we released the Infant Brain Extraction and Analysis Toolbox (iBEAT) dedicated 

for processing and analyzing infant brain MRIs in NITRC (https://www.nitrc.org/projects/

ibeat/), which has been widely used in the research community (6,000+ downloads). 

However, it suffers from several limitations, including a) the unsatisfactory generalizability 

for images acquired by different protocols and scanners; b) lack of cortical surface-based 

analysis tools; and c) requirement of the pre-installation of the commercial software 

MATLAB. To address these issues, we redesigned and developed this iBEAT V2.0 

pipeline. There are 3 major improvements. 1) The image segmentation model is completely 

redesigned. We have leveraged the cutting-edge deep learning method to address the 

extremely challenging tissue segmentation problem for the infant brain, which significantly 

improves the accuracy and further extends the functionality of iBEAT; 2) The cortical 

surface reconstruction and measurement computation components are incorporated into the 

pipeline to better serve the community for brain cortical surface analysis; 3) The iBEAT 

V2.0 no longer needs the commercial software MATLAB, which is a substantial barrier 

for many users and can introduce many incompatible issues between different versions. 

Meanwhile, we have maintained a cloud server (www.ibeat.cloud) for image processing for 

users without sufficient computational resources, and also a local software package as a 

Docker container (https://hub.docker.com/repository/docker/zhwwu/ibeat200).

Fig. 3 illustrates the overall flowchart of iBEAT V2.0, which takes structural T1w 

and/or T2w infant brain MR images as input and includes two major components: image 

segmentation and cortical surface reconstruction. For the image segmentation component, 

iBEAT V2.0 removes the brain skull and cerebellum and then segments the cerebrum 

into three tissue types, i.e., gray matter, white matter, and cerebrospinal fluid (CSF). 

To efficiently address the distinct MRI appearance patterns at different ages of the 

brain, we have trained multiple age-dependent brain tissue segmentation models instead 

of training a single network model. For the cortical surface reconstruction component, 

using accurately segmented tissues, iBEAT V2.0 reconstructs topologically correct and 

geometrically accurate cortical surfaces, including the inner surface (the interface between 

white matter and cortical gray matter), the outer/pial surface (the interface between 
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cortical gray matter and CSF), as well as the middle surface (the geometric center of 

the inner and outer surfaces). With the reconstructed cortical surfaces, iBEAT V2.0 then 

computes multiple biologically meaningful cortical measurements for brain development 

quantification, including the cortical thickness, cortical surface area, mean curvature, sulcal 

depth, gyrification index, myelin content, etc. It is worth noting that, to maximally avoid any 

unnecessary image interpolation during computation, the tissue segmentation map and the 

reconstructed cortical surfaces are obtained in the individual native space, which can then be 

easily aligned to any standard space for further analysis.

We have extensively validated our pipeline with more than 16,000+ infant MRI scans 

in different age groups from 100+ institutions and imaging centers. These large-scale 

multi-site, multi-age, and multimodal infant brain MRI datasets have demonstrated that 

our pipeline is highly effective and robust. Our pipeline has been adopted in many infant 

neuroimaging studies, resulting in high-impact publications (Ellis et al., 2021; Grotheer 

et al., 2022; Hu et al., 2022; Jiang et al., 2022; Na et al., 2021; Natu et al., 2021; Y. 

Wang et al., 2022). For example, the reconstructed cortical surfaces were used to study the 

retinotopic organization of the visual cortex in infants (Ellis et al., 2021) and functional 

connectome fingerprint during infancy (Hu et al., 2022). The computed cortical thickness 

and surface area were used to investigate the relationships between maternal obesity during 

pregnancy and neonatal cortical development (Na et al., 2021) and the developmental 

abnormality of structural covariance networks in infants with autism (Y. Wang et al., 2022). 

The segmentation maps were used in the analysis of the infant cortex microstructural 

development (Natu et al., 2021) and the white matter myelination during infancy (Grotheer 

et al., 2022), The segmentation maps were also employed to accurately align the individual 

brains to the atlas for functional networks construction (Jiang et al., 2022).

2. Materials

To quantitatively validate our pipeline, we adopted 3 public datasets: 1) The 

BCP dataset (https://nda.nih.gov/edit_collection.html?id=2848), which includes typically-

developing brains from term birth to 6 years of age; 2) The dHCP dataset (http://

www.developingconnectome.org/data-release/second-data-release/), which includes preterm 

and term-born neonatal brains; and 3) A multi-site multi-scanner 6-month dataset, MSMS6 

(https://iseg2019.web.unc.edu/data/), which includes normal brain images acquired at about 

6 months of age from different sites with 4 different scanners, manufactured by Siemens, 

GE, and Philips. Notably, among these 3 datasets, the dHCP dataset has released its 

processed results, which can be used as a reference to evaluate our pipeline. Furthermore, 

for the MSMS6 dataset, the brain tissues were manually labeled by experts, thus providing a 

reference for quantitatively evaluating the tissue segmentation performance.

The BCP dataset includes 623 longitudinal scans from 288 subjects (136 males/152 females) 

from term birth to 6 years of age. For each scan, both T1w and T2w images were collected 

with 3T Siemens Prisma MRI scanners using a 32 channel head coil. The T1w images 

were collected with parameters: TR/TE/TI=2400/2.24/1060 ms and flip angle=8°, with a 

spatial resolution of isotropic 0.8 mm. The T2w images were collected with parameters: 

TR/TE=3200/564 ms and flip angle=VAR, with a spatial resolution of isotropic 0.8 mm.
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The dHCP dataset (the second data release) includes 558 longitudinal scans acquired from 

505 (283 males/222 females) preterm and term born neonates from 29 to 45 weeks in 

post-menstrual age (Makropoulos et al., 2018). Among these scans, 492 have both T1w 

and T2w images, while the remaining scans have only T2w images. The T1w images were 

acquired using an IR (Inversion Recovery) TSE sequence, with TR/TE/TI = 4795/8.7/1740 

ms and a resolution of 0.8×0.8×1.6 mm3. The T2w images were obtained using a Turbo 

Spin Echo (TSE) sequence to alleviate the motion effects, with TR/TE = 12000/156 ms 

and a resolution of 0.8× 0.8×1.6 mm3. In the released dataset, both T1w and T2w images 

were resampled to a resolution of isotropic 0.5 mm for the tissue segmentation and cortical 

surface reconstruction.

The MSMS6 (Multi-site multi-scanner subjects at 6 months) dataset includes 22 normal 

6-month-old infant brain images, collected at different sites with 4 different scanners and 

different imaging protocols. For each brain, both T1w and T2w images were acquired. 

Based on their imaging protocols, these 22 scans can be partitioned into 4 groups: 1) 

six brains scanned with a Siemens PRISMA scanner, with T1w imaging parameters: 

TR/TE/TI=2400/2.24/1060 ms, flip angle=8°, resolution=0.8×0.8×0.8 mm3; and T2w 

imaging parameters: TR/TE=3200/564 ms, flip angle=VAR, resolution=0.8×0.8×0.8 mm3; 

2) five brains scanned with a Siemens Trio scanner, with T1w imaging parameters: 

TR/TE/TI=2400/2.19/1000 ms, flip angle=8°, resolution=1×1×1 mm3; and T2w imaging 

parameters: TR/TE=3200/561 ms, flip angle=120°, resolution=1×1×1 mm3; 3) five 

brains scanned with a GE scanner, with T1w imaging parameters: TR/TE=7.6/2.9 

ms, flip angle=11°, resolution=0.94×0.94×0.8 mm3; and T2w imaging parameters: TR/

TE=2502/91.4 ms, flip angle=90°, resolution=1×1×0.8 mm3; 4) six brains scanned with 

a Phillips scanner, with T1w imaging parameters: TR/TE=10/4.6 ms, flip angle=8°, 

resolution=1×1×1 mm3; and T2w imaging parameters: TR/TE=2500/310 ms, flip angle=90°, 

resolution=1×1×1 mm3. For all images in this dataset, the gray matter, white matter, and 

CSF were manually labeled and cross-checked by 3 experienced experts and were used in 

MICCAI Grand Challenge on 6-month Infant Brain MRI Segmentation 2019.

For a concise comparison, we summarize the three datasets used for our pipeline evaluation 

in Table 1. It is worth noting that these 3 evaluation datasets include images from major 

scanner manufacturers, and the images were obtained with varying imaging parameters. 

Also, these 3 evaluation datasets cover pediatric brains with ages ranging from preterm 

birth to 6 years. Therefore, they enable a comprehensive examination of how our pipeline 

performs on different early developing brains with varying imaging protocols over a wide 

age range.

3. Procedure

1). Preprocess the image (--Timing, 10 min).

(i) Reorient and resample the original 3D image into a consistent direction and resolution. 

First, according to the slicing strategy and head orientation, reorient the original 3D 

image so that: a) the first dimension of the volume corresponds to sagittal slices, which 

goes from left to right as the index increases; b) the second dimension corresponds to 

coronal slices, which goes from posterior to anterior as the index increases; c) the third 
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dimension corresponds to transverse slices, which goes from inferior to superior as the index 

increases. Second, unify the resolution by resampling each image to be 0.8 mm isotropic for 

consistency with the image resolution as we used for model training.

(ii) Correct the intensity inhomogeneity. Both the N3 (Sled et al., 1998) and N4 (Tustison et 

al., 2010) methods can be used for this task2. Based on our experiences, setting the default 

distance parameter and running N3 three times achieves similar performance with N4. Since 

we trained our models based on training images corrected by N3, to be consistent with the 

training, we used N3 for removing the bias field in the pipeline.

(iii) Align T1w and T2w images when two modalities are available. In many studies, both 

T1w and T2w images are acquired to provide complementary information for neuroimaging 

analysis. In this case, we leverage information from both T1w and T2w images to improve 

the processing accuracy. Because two modalities present the same brain, a linear registration 

is sufficient to align them. Therefore, we use “FLIRT” in FSL to linearly align the T2w 

image onto the corresponding T1w image (Jenkinson et al., 2002; Jenkinson & Smith, 

2001). Notably, to reduce multiple-interpolation errors, the alignment and resampling are 

combined to form a single transformation, which leads to one-time interpolation to generate 

the resampled and aligned T2w image.

2). Strip the non-brain structures (including head-neck tissues, brain skull, scalp, and 
dura) and then remove the cerebellum from the image (as illustrated in Fig. 3(b)) (--Timing, 
10 min).

We formulate skull stripping and cerebellum removal as two segmentation problems and 

train a patch-based deep learning method (please refer to the supplementary files for method 

details) for this step.

3). Segment the cerebrum into gray matter (GM), white matter (WM) and cerebrospinal 
fluid (CSF) (as illustrated in Fig. 3(c)) (--Timing, 20 min).

This step is the most challenging task in infant MRI processing, due to three major reasons: 

a) the appearance pattern of the same tissue type varies across different age groups due to 

the undergoing myelination process; b) the image contrast among different tissues during 

infancy is extremely low, especially in the 6-month-old brain; and c) the cerebral cortex is 

a highly convoluted structure with large inter-subject variability and is only a few voxels in 

thickness.

To address these challenges, instead of training a single neural network model for all age 

groups like skull stripping, we train a specialized deep learning-based tissue segmentation 

model for each representative age group. More details about the segmentation network are 

illustrated in the supplementary files.

2More details are provided in the supplementary files.
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4). Separate the tissue map into left and right hemispheres (as illustrated in Fig. 3(d)) 
(--Timing, 5 min).

To better characterize medial cortical structures, the cerebrum is split into the left and right 

hemispheres, and subcortical regions and lateral ventricles are filled with white matter to 

facilitate surface reconstruction. We split the brain into the left and right hemispheres by 

registration (see registration method details in the supplementary files) of an age-matched 

template onto the individual brain. The labels of hemispheres, subcortical regions and 

ventricles in the template are propagated to the individual brain based on the obtained 

transformation, as shown in Fig. 3(d).

5). Correct the topological errors of the left and right hemispheres (as illustrated in Fig. 
3(e)) (--Timing, 15 min).

While embedded in 3D space, the cortical surface of each hemisphere is topologically 

equivalent to a sphere, i.e., a 2D closed surface (Fischl et al., 1999). We first locate where 

the topological errors occurred are by deforming an initial surface with a sphere topology 

(i.e., an ellipsoid) to closely wrap the segmented white matter volume, while preserving 

its initial topology, by using a shrinking-wrapping topology-preserving level set method 

(more details can be referred to supplementary files). Then, we can employ a learning-based 

method to adaptively correct the detected topological errors (L. Sun et al., 2019).

6). Reconstruct the cortical surfaces (as illustrated in Fig. 3(f)) (--Timing, 1.5h).

Two cortical surfaces enclosing the cerebral cortex, i.e., the outer/pial surface (the interface 

between gray matter and CSF) and the inner surface (the interface between gray matter 

and white matter) for each hemisphere are reconstructed. In some applications, the middle/

central cortical surface, which is defined as the geometric center of the outer and inner 

cortical surfaces, also needs to be reconstructed for a more balanced representation of sulcal 

and gyral regions. Specifically, after correction of topological errors, we reconstruct cortical 

surfaces, represented by triangular meshes, by first reconstructing the inner surface and then 

reconstructing the middle and outer/pial surfaces. More details of this step can be referred 

to the supplementary files. Fig. 4 shows the reconstructed inner and outer cortical surfaces 

(color-coded by cortical thickness) overlayed on corresponding T1w MR images from the 

same subject at different ages.

7). Compute the cortical properties (as illustrated in Fig. 3(g) and Fig. 3(h)) (--Timing, 30 
min).

Once cortical surfaces are reconstructed, we compute multiple biologically distinct and 

meaningful cortical properties for each vertex, e.g., cortical thickness, surface area, myelin 

content, sulcal depth, gyrification index, and curvatures, to comprehensively characterize the 

complex development of the cerebral cortex during infancy (please refer to supplementary 

files for their detailed definitions and computations). Also, we use the typical surface 

registration methods (Fischl et al., 1999; Robinson et al., 2014; Yeo et al., 2010; Zhao, Wu, 

Wang, Lin, Gilmore, et al., 2021; Zhao, Wu, Wang, Lin, Xia, et al., 2021) to propagate 

different parcellations on atlases onto the reconstructed cortical surfaces. Some typical 

cortical properties and parcellations are presented in Fig. 3 (g) and (h).
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4. Troubleshooting

Step Problem Possible reason Solution

1) Orientation/
resampling cannot 
be performed.

Non-raw images were 
provided.

We need images with correct header to extract the brain 
information (size, resolution, datatype, orientation, etc.). 
Use the raw images as the input and rerun the pipeline.

2) Non-brain structures 
or the cerebellum are 
not well removed.

The brain image is 
scanned with too 
large obliquity or 
may contain large 
area of the shoulder 
structures.

1. Manually rotate the image to constrain the brain obliquity 
less than 30 degrees and then rerun the pipeline with the 
manually rotated image. 
2. Crop the raw image to remove shoulder structures and 
then rerun the pipeline with the cropped image. 
3. Manually edit the mask for the brain or the cerebellum 
generated from the pipeline with the interactive toolkit 
ITK-snap (http://www.itksnap.org), then rerun the pipeline 
by providing the corrected brain or cerebellum mask as 
additional input.

3) The tissue 
segmentation map 
contains some errors.

The brain image is 
with severe motions.

1. If one modality was corrupted with severe motions while 
the other one was with free or moderate motions, run 
the pipeline with only the modality with free or moderate 
motions. 
2. If only one modality is available but with severe motions, 
try to run the pipeline with downsampled modality (e.g., 
1*1*1mm3). 
3. Manually edit the segmentation map with the interactive 
toolkit ITK-snap (http://www.itksnap.org) and then rerun 
the pipeline using the corrected segmentation map as an 
additional input.

3) Out of memory 
issue.

The GPU memory is 
too small.

1. Equip the GPU with at least 4GB memory. 
2. Use our pipeline’s online version (www.ibeat.cloud) to 
conduct the processing.

6) The reconstructed 
cortical surface has 
incorrect topology.

The topology 
correction may 
involve some errors.

Manually edit the left and right hemisphere tissue maps to 
remove topological errors.

6) The reconstructed 
cortical surface is 
not aligned with the 
images.

The segmentation 
image has incorrect 
header.

Do not change the segmentation header when manually 
editing the segmentation map.

5. Anticipated Results

5.1 Comparison with Existing Pipelines

Currently, there are very few processing pipelines that are available for infant brains. 

Previous studies have shown that adult brain MRI processing pipelines, like FSL and 

FreeSurfer, do not work well for infant brains (L. Wang et al., 2015; Zöllei et al., 2020). 

Therefore, we compared our pipeline with the recently developed infant pipelines, including 

the Infant FreeSurfer and dHCP pipelines. In addition, we compared our results with 

FastSurfer which uses deep learning for tissue segmentation but mainly handles the adult 

brain, and other top deep learning algorithms in the MICCAI iSeg-2019 challenge.

5.1.1 Comparison with Infant FreeSurfer—We compared our pipeline with the 

Infant FreeSurfer pipeline on the above mentioned 3 datasets. Our pipeline flexibly accepts 

different combinations of MRI modalities for processing, i.e., a) both T1w and T2w images, 

b) single T1w image, and c) single T2w image; in contrast, the Infant FreeSurfer pipeline 

only takes T1w images as the input. As a fair comparison, we only used T1w images 

for comparison with Infant FreeSurfer. However, we should emphasize that our pipeline 

generates even better results when inputting both T1w and T2w images.
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Fig. 5 shows typical processing results of our pipeline and the Infant FreeSurfer pipeline on 

images at different ages in the BCP dataset. We compared these pipelines at 9 time points, 

i.e., around 1 month, 3 months, 6 months, 9 months, 12 months, 18 months, 24 months, 

36 months, and 60 months of age. Fig. 5 (b) and (c) demonstrate that our pipeline achieves 

much better segmentation performance than the Infant FreeSurfer does, especially for brains 

before 12 months. This is because the Infant FreeSurfer pipeline uses the multi-atlas and 

label fusion strategy, which is highly dependent on the registration accuracy when aligning 

the atlases onto individual brains, to build the mapping from the image appearance and 

tissue labels. However, in the first postnatal year, the T1w image has poor tissue contrast 

due to the underlying myelination process; furthermore, the image appearance undergoes a 

dramatic change due to individualized, regionally heterogeneous development. These two 

factors make accurate registration from the atlases onto individual brains a challenging task. 

On the contrary, our pipeline leverages the powerful learning ability of deep learning-based 

methods to directly learn the complex mapping from the intensity images to tissue labels. 

Compared to registration-based tissue segmentation, our deep learning-based method can 

automatically discover and capture more reliable semantic information from images, which 

leads to much better tissue segmentation performance and more robust generalizability for 

multi-site images.

We also reconstructed the inner and outer cortical surfaces and visualized the reconstructed 

inner cortical surfaces. In Fig. 5 (d), we overlapped the reconstructed cortical surfaces on 

intensity images. From the figure, we observe that our reconstructed cortical surfaces are 

well aligned with tissue boundaries. In Fig. 5 (e) and (f), we visualized the inner cortical 

surfaces reconstructed by our pipeline and Infant FreeSurfer, respectively. From these figure 

panels, we observe that our pipeline achieves much more reasonable results by accurately 

capturing the major gyral and sulcal folding, which is established at term birth, according to 

existing neuroscientific knowledge.

A comparison of the results from Infant FreeSurfer and our pipeline shows that around 6 

months of age, our pipeline performs significantly better than Infant FreeSurfer does. This is 

not surprising, given that the extremely low tissue contrast in 6-month-old infant brain MRIs 

generally severely degrades the atlas-to-individual registration performance. After 1 year of 

age, the Infant FreeSurfer gradually achieves improved results, due to the increased tissue 

contrast. However, many cortical details that are still missing in the Infant FreeSurfer results 

are well revealed by our pipeline.

In addition to the BCP dataset, Fig. 6 shows typical processing results from the Infant 

FreeSurfer and our pipeline for two representative dHCP scans and two representative 

MSMS6 scans (using their T1w images). Similarly, we observed that our pipeline achieves 

superior performance. It is worth noting that the dHCP scans were acquired with a Philips 

MRI scanner, 1 MSMS6 scan (MSMS6–1) was acquired with a GE scanner and the other 

MSMS6 scan (MSMS6–2) was acquired with a Siemens Trio scanner. Although our training 

data are from the Siemens PRISMA scanner, our pipeline trained with a single dataset 

adapted effectively to the intensity distribution variability caused by different scanners and 

achieved superior performance, which is further evaluated below, in section 5.3.
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5.1.2 Comparison with the dHCP Released Processed Data—We applied our 

pipeline to the dHCP dataset and compared our results with the released processing results 

from dHCP. Fig. 7 shows a visual comparison between our pipeline results and the dHCP 

released data for two randomly selected scans. From this figure, we observe that our results 

are consistent with the dHCP results, even though our pipeline was not trained using the 

dHCP dataset.

To quantitatively evaluate the performance of our pipeline, we compared our results with the 

dHCP released results and evaluated their consistency by two measures, i.e., a) the Dice ratio 

(DSC) of the gray matter and white matter between our tissue segmentation and the dHCP 

released segmentation; and b) the average surface distance (ASD) between our reconstructed 

cortical surfaces and the dHCP released cortical surfaces. Higher DSC and the lower ASD 

indicate higher consistency of these two pipelines. Fig. 8 shows that our pipeline’s results 

are consistent with the dHCP pipeline’s results. Note that the dHCP pipeline is optimized 

for neonatal brains, while our pipeline can handle pediatric brains from preterm birth to 6+ 

years of age.

Additionally, when comparing the reconstructed cortical surfaces between the dHCP 

pipeline and our pipeline, we found that our pipeline typically achieves better and more 

reasonable and detailed cortical folds in the occipital lobe. This is because compared to other 

regions, the occipital lobe has a thinner and more convoluted cortex, making it more difficult 

to accurately reconstruct, with a typical example shown in Fig. 9. The cortical surface 

reconstructed by the dHCP pipeline missed some gyri in both the left and right hemispheres, 

while our method successfully reconstructed them.

5.1.3 Comparison with FastSurfer—FastSurfer (Henschel et al., 2020) is a recently 

released pipeline that leverages the deep learning technique to accelerate the adult 

FreeSurfer pipeline. Although it is mainly designed for adult brains, it is the first publicly 

available pipeline that adopted the deep learning strategy for tissue segmentation. Fig. 10 

shows a comparison of FastSurfer and our pipeline using BCP subjects at 5 different ages. 

We observe a relatively high consistency between our pipeline and FastSurfer for the early 

adult-like brain (the last row). However, for younger brains, especially before 12 months of 

age, FastSurfer performs not well. The reason is that the training for FastSurfer is based on 

adult MRIs, which have completely different MRI tissue contrast and appearances than those 

of infant MRIs before 1 year of age. At around 2 years of age, FastSurfer achieves relatively 

improved segmentation, and at around 6 years of age, FastSurfer and our pipeline perform 

similarly, achieving relatively consistent segmentation results for the gray matter and white 

matter.

Besides using the infant data for training, there are two important strategies that may be 

favorable for better adapting FastSurfer or similar methods on infant brain images, i.e., 1) 

training age-dependent segmentation models. Because image appearances and brain sizes 

change significantly over months for the infant brains, especially in the first two years, due 

to the undergoing myelination process and the substantial brain growth rate; b) boosting the 

neighboring information embedding using 3D images instead of 2D image slices. This is 

because the local tissue contrast varies dramatically across different brain regions due to the 
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spatiotemporally heterogeneous development. As the hierarchical convolution and pooling 

in the 3D space can provide more informative patterns compared to those in the 2D space, 

richer neighboring information can be embedded and learned with 3D images.

5.2 Evaluation of Massive Multi-site Data

To better serve the early brain development research community, we maintain a web server 

(http://www.ibeat.cloud) to facilitate processing of infant brain MRIs by simply uploading 

user images through the website. We have successfully processed more than 16,000 infant 

brain images from 100+ universities and institutes worldwide. Notably, these infant images 

were acquired with varying imaging protocols using different scanners from multiple major 

manufactures. After processing and sending the results back to the users, we asked the users 

to provide feedback about the processing results so that we can further improve our pipeline. 

We have received a large number of positive comments from the community, and users are 

satisfied with our processing results. In the Supplementary Materials, we provide a more 

detailed evaluation of our pipeline from the community.

5.3 Quantitative Evaluation

5.3.1 Segmentation Accuracy Evaluation—In addition to comparing our pipeline 

with state-of-the-art pipelines, we performed a quantitative comparison on 22 infant brains 

(6-months of age) from the MSMS6 dataset. The reasons we selected these scans for 

quantitative evaluation are: a) at this age, the brain MR image has the lowest tissue contrast 

between gray matter and white matter; b) this dataset contains images from different 

scanners with different imaging protocols, which enables us to test the generalizability of 

our pipeline; and c) these 22 scans are a moderate number that we can afford to conduct the 

manual delineation and have been successfully used to hold MICCAI iSeg-2019 Challenge, 

as it is extremely time-consuming to manually label (each scan costs about one week for a 

well-trained neuroanatomist) infant brain tissues.

We also compared our method with the top 8 teams in the MICCAI iSeg-2019 challenge. 

Of note, all of these comparison methods are deep learning-based methods and use both 

T1w and T2w images. The training data are from the Siemens PRISMA scanner, and the 

testing data are from 3 different scanners and protocols. Three representative testing images 

are shown in Fig. 2, with tissue segmentation maps by iBEAT V2.0. Fig. 11 shows the 

quantitative comparisons with other methods. Our method achieved not only higher accuracy 

but also more consistent performance across the 3 scanners, demonstrating the robustness of 

our method for different imaging scanners and protocols.

5.3.2 Evaluation using Multimodal Images—For many infant datasets, both T1w 

and T2w images are collected, which can provide complementary information for tissue 

segmentation. Therefore, we also test whether our pipeline works robustly and consistently 

with multimodal images. Specifically, for each brain, we fed 3 different combinations of 

T1w and T2w images, i.e., only T1w, only T2w, or both T1w and T2w, into our pipeline 

to generate corresponding segmentation results, which were then compared with manually 

labeled tissues for quantitative evaluation using the Dice ratio and ASD (L. Wang et al., 

2019). Fig. 12 shows comparison results for the MSMS6 dataset. Only using T1w and only 
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using T2w achieved comparably good segmentation performance, whereas the combination 

achieved even better results. Therefore, multimodal images are indeed beneficial for tissue 

segmentation.

5.3.3 Evaluation of Robustness to Motion Artifacts—For infant brain MRI 

studies, motion artifacts are frequently seen in acquired images, especially for older infants 

because it is difficult to keep them sleeping during scanning (Howell et al., 2019). Thus, 

it is naturally required that the processing pipeline tolerates motion artifacts. Therefore, we 

further evaluated our pipeline using images with motion artifacts. If a method is robust 

to the motion artifacts, it is expected that its segmentation result on a motion-free testing 

subject should be consistent with the segmentation result on the same subject with motion 

artifacts. To this end, we tested different methods on 5 testing subjects acquired at 24 

months old. These 5 subjects are motion-free based on experts’ visual inspection and were 

manually labeled for evaluation. Then, we simulated motion with the popular K-space 

truncating and overlapping (Paschal & Morris, 2004; Zaitsev et al., 2015) with the following 

steps: 1) decomposing the MR images into the k-space; 2) overlapping the corresponding 

spectrum in the k-space; 3) reconstructing the MR images using the overlapped spectrum, 

thus simulating the images with motion artifacts. After that, we derived 5 motion-corrupted 

subjects. We applied Infant FreeSurfer, volBrain, FreeSurfer, FastSurfer, and our pipeline 

to the motion-free and motion-corrupted subjects to determine whether the segmentation 

results are consistent with manual labels. Fig. 13 shows representative segmentation results 

for one of 5 subjects with and without motion artifacts. Because the testing subject is a 

24-month-old brain, all methods achieved reasonable segmentation results. The difference 

map between the segmentation results with and without motion artifacts for each method is 

shown in the last column of Fig. 13. The qualitative comparisons indicate that our results are 

highly consistent, supporting the robustness of our pipeline to motion artifacts. We further 

performed a quantitative evaluation as shown in Fig. 14. By comparing the performance gap 

between the results on the motion-free and motion-corrupted images, we find our method 

shows much better robustness to motion, with only a subtle performance drop in the Dice 

ratio and ASD, whereas for other methods, the performance for the motion-corrupted images 

shows a substantial decline.

5.3.4 Evaluation of Robustness of Motion Artifacts in different Modalities 
and Age Groups—Besides evaluating our pipeline with multimodal images at the age 

of 6 months and the robustness of the motion artifacts at age of 24 months, we have also 

validated our pipeline using motion-free/motion-corrupted images from different modalities 

and age groups. We hope this experiment can provide comprehensive insights for users to 

select the optimal modality images for infant brain analysis.

We randomly selected 30 scans from BCP dataset at 1, 6, 12, and 24 months of age 

under different modality combinations (T1w, T2w, and T1w+T2w). We first simulated the 

motion artifacts using the same strategy as in section 5.3.2. Then, we fed these images 

with simulated motion artifacts into our pipeline to derive the segmentation. After that, 

we can measure the pipeline performance in terms of motion artifacts by comparing the 
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segmentation results (from motion-free images and motion-corrupted images) to the manual 

labels, respectively.

Fig. 15 shows the typical T1w images, T1w images with motions, and the segmentation 

(red contour) on T1w images with motions, compared to the manual ground truth (green 

contour) at different age groups. The stacked bar plot in Fig. 16 reports the comparison 

results. For the Dice ratio measurements of the GM and WM, the blue, purple, and green 

bars indicate the segmentation accuracy by different modality combinations on the motion-
corrupted images (generally having lower Dice ratio), respectively. While the orange color 

indicates the accuracy gap between the results on the motion-free and the motion-corrupted 
images with the same modality configuration. For the ASD measurements of GM and WM, 

the blue, purple, and green bars indicate the segmentation accuracy by different modality 

combinations on the motion-free images (generally having lower ASD), respectively. While 

the orange color indicates the accuracy gap between the results on the motion-free and the 

motion-corrupted images with the same modality configuration.

From the modality perspective, before 3 months of age, the T2w modality achieves 

better segmentation performance than T1w modality, and it can even achieve comparable 

segmentation performance to the T1w+T2w modalities; At around 6 months of age, the 

T1w+T2w combined modalities have superior performance, compared to either the single 

T1w or T2w modality. After 1 year of age, the T1w, T2w and T1w+T2w modalities can 

achieve comparable segmentation performance.

From the motion robustness perspective, as we can see, a) our pipeline is very robust to the 

motion artifacts with different modality combinations at all ages, e.g., the Dice ratios of the 

GM and WM segmentation can reach over 85% at 1, 12 and 24 months even with the motion 

corruption. The performance at 6 months is slightly degraded, which is reasonable, because 

the tissue contrast is extremely low in this age group. b) The combined modalities (T1w 

+ T2w) consistently have better segmentation performance compared to the single T1w or 

T2w modality when motion is present for all age groups, especially at age of 6 months.

5.3.5 Spatial Resolution Influence Evaluation—In different studies, the infant brain 

image can be acquired with different resolutions. Therefore, we have further validated of 

the spatial resolution influence on the segmentation using the BCP dataset. Specifically, 

we first down sample the BCP dataset to different resolutions, including 0.8×0.8×1.0 

mm3, 1.0×1.0×1.0 mm3, 1.0×1.0×1.2 mm3, 1.0×1.0×1.5 mm3, 1.2×1.2×1.2 mm3, and 

1.5×1.5×1.5 mm3, which are typically used in many infant brain studies. Then, we conduct 

the segmentation on the down sampled images using our pipeline and compare these 

segmentation results to the segmentation results on the original BCP dataset with an 

isotropic 0.8mm resolution.

Fig. 17 reports the comparison results at different resolutions. It can be seen the 

segmentation accuracy decreases as the resolution becomes coarse. Specifically, the 

segmentation on 0.8×0.8×1mm images has the most similar results with images with 

isotropic 0.8mm resolution, with the Dice ratio reaching around 0.97 for the gray matter and 

white matter. For the resolutions from 1.0×1.0×1.0 mm3 to 1.2×1.2×1.2 mm3, the Dice ratios 
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are consistently close to 0.9, which drop significantly at the resolution 1.5×1.5×1.5 mm3. 

Therefore, based on the visual check of the segmentation and the quantitative evaluation, 

images with minimum 1.2mm resolution are recommended to get satisfactory processing 

results.

5.3.6 Image Contrast Influence Evaluation—During the early brain development, 

different brain regions exhibit different tissue contrasts due to the asynchronous maturation. 

Therefore, it would be very informative to provide the quantifications of the contrast and 

our pipeline segmentation performance in different brain regions. To achieve this objective, 

for the typical age groups of 1 month, 6 months, 12 months, and 24 months, we randomly 

selected 30 scans from the BCP dataset for each group for validation.

To quantify the contrast on T1w (or T2w) infant brain images, following the work in 

(Drakulich et al., 2021), we computed the intensity ratio of paracortical gray matter and 

white matter. Specifically, our pipeline has reconstructed the inner cortical surface (the 

boundary between the gray matter and the white matter), the outer surface (the boundary 

between the gray matter and the cerebrospinal fluid), and the middle cortical surface (the 

geometric center of the inner and outer cortical surfaces). Since the reconstructed cortical 

surfaces have the vertex-wise correspondence, for any vertex on the middle cortical surface, 

we can get the corresponding vertex on the inner cortical surface. Then, we deform each 

vertex inward along the opposite direction of the normal direction with the distance of its 

half cortical thickness and move the vertex into the white matter. After that, the intensity 

ratio of the gray matter vertex and the white matter vertex is computed as the contrast. The 

first two rows in Fig. 18 show the color-coded average contrast of the T1w and T2w images, 

averaging from the randomly selected 30 scans of each group. From the figure, different 

brain regions show different contrasts at different age groups. Particularly, at 6 months, both 

the T1w and T2w images have very low tissue contrast (where most vertices’ values are 

around 1) in the cortical regions.

To evaluate the segmentation performance on different brain regions, we parcellated the 

cerebral cortex into 34 regions (using the Desikan-Killiany cortex parcellation protocol 

(Desikan et al., 2006)) for each hemisphere, by registering each reconstructed cortical 

surface onto the age-matched surface atlas (Wu et al., 2019) using the spherical demons 

(Yeo et al., 2010). We use the Desikan-Killiany parcellation protocol, because it is based 

on the sulci-gyri folding pattern, which has been established at term birth. Then, for 

each region, we evaluate the segmentation performance using the ASD (Average Surface 

Distance) and Dice ratio. The third and fourth rows in Fig. 18 show the color-coded 

average regional ASD and Dice ratio maps of the gray matter segmentation compared to the 

ground truth. From this figure, we can see that our pipeline consistently achieves accurate 

segmentation in most regions.

5.3.7 Cortical Surface Quality Evaluation—Small under- or over-segmentation 

errors in tissue maps can cause large cavities or lumps in the cortical folds, which are 

not well reflected by global evaluation metrics like DSC or ASD but could lead to 

inaccurate morphological measurements of the cerebral cortex. To verify the quality of 

cortical surfaces, three experts (with more than 5 years’ experiences on cortical surface 
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analysis) visually inspected all of the reconstructed cortical surfaces from the BCP dataset. 

Each expert graded the reconstructed cortical surfaces using three scores, i.e., 1: Poor; 2; 

Fair; 3: Good. Score 3 indicates that the reconstructed cortical surface well represented the 

morphometry of the cerebral cortex, while score 1 indicates that the surface quality was poor 

and not useful.

Fig. 19 shows some typical examples of the reconstructed cortical surface of different 

quality levels, including poor, fair and good. Of note, the fair and good surfaces shown 

below are reconstructed from our pipeline, while the poor surfaces are not generated from 

our pipeline. They are merely for illustration purpose. From this figure, we can see that, 

a) poor surfaces have apparent wrong geometry (e.g., missing gyri or sulci) or topology, 

typically leading to inaccurate cortical measurements; b) for fair surfaces, most parts of the 

reconstructed surfaces are correct, while some small parts of gyri/sulci are missing; c) for 

good surfaces, the gyri and sulci are successfully reconstructed, from which, the cortical 

measurements, like the cortical thickness, sulcal depth, curvature, and local gyrification 

index, can be computed accurately.

For each scan, the average score from the 3 experts was adopted as the final evaluation 

score. After evaluation, 598 scans out of the 623 total scans achieved a score of 3, while 

the remaining 25 scans achieved a score of 2. This suggests that our reconstructed cortical 

surfaces effectively represent the morphometry of developing infant brains.

5.4 Developmental Trajectory Comparison with Previous Studies

One of the major motivations for the infant MRI processing pipeline is to generate accurate 

quantitative measurements of infant brain development. With the accurate segmentation 

maps, we can measure the volume of the gray matter and white matter for the cerebrum. 

In addition, after cortical surfaces were reconstructed, we can compute the average cortical 

thickness and total cortical surface area. Their developmental trajectories can be used for 

the charting development pattern of a cohort. Fig. 20 shows the gray matter volume, white 

matter volume, cortical thickness, and the total cortical surface area of different scans at 

different ages from the BCP data set. From the figure, the gray matter increases about 3 

times, while the white matter volume increases about 2 times from birth to the age of two 

years, respectively. The cortical thickness is projected to first increase rapidly from birth to 

reach a peak (around 14 months) and then slightly decrease thereafter; while the cortical 

surface area is projected to undergo a dramatic expansion in the first year followed by a 

continuous remarkable expansion with gradually reduced rates. These discoveries are not 

only consistent with previous findings using very sparse imaging time points (Li et al., 2013, 

2015; Lyall et al., 2015; Nie et al., 2014; F. Wang et al., 2019), but also provide much more 

detailed developmental patterns, demonstrating the effectiveness of the proposed pipeline.

5.5 Computational Time

The running time of our pipeline is as follows. For the segmentation component (from 

skull-stripping to tissue segmentation), the average running time on a BCP scan is about 

40 mins. For cortical surface reconstruction and measurement, the average running time is 

about 3 hours. In total, the pipeline takes about 4 hours to complete the processing for a 
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single scan. The above computational time is measured on a PC with an i7-8700k CPU and 

an Nvidia Geforce 1080Ti GPU. By comparison, our pipeline is faster than other pipelines, 

which on average take about 6–9 hours on a BCP scan with the same PC.

6 Conclusions and Future Work

In this paper, we have presented a robust, widely applicable, deep learning-based, infant-

dedicated cortical surface reconstruction pipeline, and we have extensively validated it using 

16,000+ infant brain images acquired from different age groups and different imaging 

protocols and scanners worldwide. Our proposed pipeline leverages powerful deep learning 

techniques to overcome issues of extremely low and dynamic tissue contrast and includes 

training on multiple age-specific segmentation models in order to achieve accurate tissue 

segmentation results. Based on the accurately segmented brain tissues, we reconstructed 

topologically correct and geometrically accurate cortical surfaces using a deformable surface 

method. Then, with the reconstructed cortical surfaces, we computed multiple biologically 

meaningful cortical measurements for characterizing infant brain development. Compared 

to other state-of-the-art infant MRI processing pipelines, our pipeline is significantly more 

accurate for reconstructing and measuring early developing cerebral cortex, especially for 

the first postnatal year.

Currently, our pipeline has two limitations. a) We have not included the subcortical structure 

and the cerebellum segmentation components. For the subcortical structure segmentation, 

we are actively developing and have achieved some promising results (please refer to 

the supplementary files for more details). After intensive validation, we will incorporate 

this part into our pipeline too. For the cerebellum, we are also developing dedicated 

segmentation tools. b) We have not incorporated the longitudinal consistency constraints 

when dealing with longitudinal scans, which are generally required for longitudinal studies. 

In the future, we will continue working on this pipeline refinement and our plan is to 

have a longitudinally-consistent lifespan brain imaging computation pipeline for the cerebral 

cortex, subcortex, and cerebellum.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

This work was partially supported by NIH grants (MH116225, MH117943, MH109773, and MH123202). This 
work also utilizes approaches developed by an NIH grant (1U01MH110274) and the efforts of the UNC/UMN 
Baby Connectome Project Consortium. The authors would also like to thank Dr. Dinggang Shen for an initial 
discussion of this work when he was with the University of North Carolina at Chapel Hill.

References

Dale AM, Fischl B, & Sereno MI (1999). Cortical surface-based analysis: I. Segmentation and surface 
reconstruction. NeuroImage, 9(2), 179–194. 10.1006/nimg.1998.0395 [PubMed: 9931268] 

Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, & Hyman BT (2006). An automated labeling system for subdividing the human 

Wang et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. 
[PubMed: 16530430] 

Drakulich S, Thiffault AC, Olafson E, Parent O, Labbe A, Albaugh MD, Khundrakpam B, Ducharme 
S, Evans A, Chakravarty MM, & Karama S (2021). Maturational trajectories of pericortical contrast 
in typical brain development. NeuroImage, 235. 10.1016/j.neuroimage.2021.117974

Ellis CT, Yates TS, Skalaban LJ, Bejjanki VR, Arcaro MJ, & Turk-Browne NB (2021). Retinotopic 
organization of visual cortex in human infants. Neuron, 109(16), 2616–2626.e6. 10.1016/
j.neuron.2021.06.004 [PubMed: 34228960] 

Fischl B, Sereno MI, & Dale AM (1999). Cortical surface-based analysis: II. Inflation, flattening, and 
a surface-based coordinate system. NeuroImage, 9(2), 195–207. 10.1006/nimg.1998.0396 [PubMed: 
9931269] 

Garcia KE, Robinson EC, Alexopoulos D, Dierker DL, Glasser MF, Coalson TS, Ortinau CM, 
Rueckert D, Taber LA, Van Essen DC, Rogers CE, Smysere CD, & Bayly PV (2018). Dynamic 
patterns of cortical expansion during folding of the preterm human brain. Proceedings of the 
National Academy of Sciences of the United States of America, 115(12), 3156–3161. 10.1073/
pnas.1715451115 [PubMed: 29507201] 

Gilmore JH, Knickmeyer RC, & Gao W (2018). Imaging structural and functional brain development 
in early childhood. Nature Reviews Neuroscience, 19(3), 123–137. 10.1038/nrn.2018.1 [PubMed: 
29449712] 

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, 
Jbabdi S, Webster M, Polimeni JR, Van Essen DC, & Jenkinson M (2013). The minimal 
preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. 10.1016/
j.neuroimage.2013.04.127 [PubMed: 23668970] 

Grotheer M, Rosenke M, Wu H, Kular H, Querdasi FR, Natu VS, Yeatman JD, & Grill-Spector K 
(2022). White matter myelination during early infancy is linked to spatial gradients and myelin 
content at birth. Nature Communications, 13(1), 1–12. 10.1038/s41467-022-28326-4

Hagler DJ, Hatton SN, Cornejo MD, Makowski C, Fair DA, Dick AS, Sutherland MT, Casey 
BJ, Barch DM, Harms MP, Watts R, Bjork JM, Garavan HP, Hilmer L, Pung CJ, Sicat CS, 
Kuperman J, Bartsch H, Xue F, … Dale AM (2019). Image processing and analysis methods 
for the Adolescent Brain Cognitive Development Study. NeuroImage, 202, 116091. 10.1016/
j.neuroimage.2019.116091 [PubMed: 31415884] 

Henschel L, Conjeti S, Estrada S, Diers K, Fischl B, & Reuter M (2020). FastSurfer - A fast 
and accurate deep learning based neuroimaging pipeline. NeuroImage, 219, 117012. 10.1016/
j.neuroimage.2020.117012 [PubMed: 32526386] 

Howell BR, Styner MA, Gao W, Yap PT, Wang L, Baluyot K, Yacoub E, Chen G, Potts T, Salzwedel 
A, Li G, Gilmore JH, Piven J, Smith JK, Shen D, Ugurbil K, Zhu H, Lin W, & Elison JT 
(2019). The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and 
protocol development. NeuroImage, 185, 891–905. 10.1016/j.neuroimage.2018.03.049 [PubMed: 
29578031] 

Hu D, Wang F, Zhang H, Wu Z, Zhou Z, Li G, Wang L, Lin W, & Li G (2022). Existence of 
Functional Connectome Fingerprint during Infancy and Its Stability over Months. The Journal 
of Neuroscience : The Official Journal of the Society for Neuroscience, 42(3), 377–389. 10.1523/
JNEUROSCI.0480-21.2021 [PubMed: 34789554] 

Jenkinson M, Bannister P, Brady M, & Smith S (2002). Improved Optimization for the Robust and 
Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage, 17(2), 825–
841. 10.1006/nimg.2002.1132 [PubMed: 12377157] 

Jenkinson M, & Smith S (2001). A global optimisation method for robust affine registration of brain 
images. Medical Image Analysis, 5(2), 143–156. 10.1016/S1361-8415(01)00036-6 [PubMed: 
11516708] 

Jiang W, Merhar SL, Zeng Z, Zhu Z, Yin W, Zhou Z, Wang L, He L, Vannest J, & Lin W (2022). 
Neural alterations in opioid-exposed infants revealed by edge-centric brain functional networks. 
Brain Communications, 4(3). 10.1093/BRAINCOMMS/FCAC112

Li G, Lin W, Gilmore JH, & Shen D (2015). Spatial patterns, longitudinal development, and 
hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age. Journal 
of Neuroscience, 35(24), 9150–9162. 10.1523/JNEUROSCI.4107-14.2015 [PubMed: 26085637] 

Wang et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, & Shen D (2013). Mapping region-specific 
longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23(11), 
2724–2733. 10.1093/cercor/bhs265 [PubMed: 22923087] 

Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, & Shen D (2014). Mapping longitudinal 
development of local cortical gyrification in infants from birth to 2 years of age. Journal of 
Neuroscience, 34(12), 4228–4238. 10.1523/JNEUROSCI.3976-13.2014 [PubMed: 24647943] 

Li G, Wang L, Yap PT, Wang F, Wu Z, Meng Y, Dong P, Kim J, Shi F, Rekik I, Lin W, & Shen 
D (2019). Computational neuroanatomy of baby brains: A review. NeuroImage, 185, 906–925. 
10.1016/j.neuroimage.2018.03.042 [PubMed: 29574033] 

Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, & Gilmore JH (2015). 
Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. 
Cerebral Cortex, 25(8), 2204–2212. 10.1093/cercor/bhu027 [PubMed: 24591525] 

Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg 
J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-
Grande L, Hughes E, Tusor N, Tournier JD, … Rueckert D (2018). The developing human 
connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. 
Neuroimage, 173, 88–112. 10.1016/j.neuroimage.2018.01.054 [PubMed: 29409960] 

Na X, Phelan NE, Tadros MR, Wu Z, Andres A, Badger TM, Glasier CM, Ramakrishnaiah RR, 
Rowell AC, Wang L, Li G, Williams DK, & Ou X (2021). Maternal Obesity during Pregnancy 
is Associated with Lower Cortical Thickness in the Neonate Brain. American Journal of 
Neuroradiology. 10.3174/ajnr.a7316

Natu VS, Rosenke M, Wu H, Querdasi FR, Kular H, Lopez-Alvarez N, Grotheer M, Berman 
S, Mezer AA, & Grill-Spector K (2021). Infants’ cortex undergoes microstructural growth 
coupled with myelination during development. Communications Biology, 4(1), 1–12. 10.1038/
s42003-021-02706-w [PubMed: 33398033] 

Nie J, Li G, Wang L, Shi F, Lin W, Gilmore JH, & Shen D (2014). Longitudinal development of 
cortical thickness, folding, and fiber density networks in the first 2 years of life. Human Brain 
Mapping, 35(8), 3726–3737. 10.1002/hbm.22432 [PubMed: 24375724] 

Paschal CB, & Morris HD (2004). K-Space in the Clinic. In Journal of Magnetic Resonance 
Imaging (Vol. 19, Issue 2, pp. 145–159). John Wiley & Sons, Ltd. 10.1002/jmri.10451 [PubMed: 
14745747] 

Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC, Harms MP, Smith SM, Van Essen 
DC, & Jenkinson M (2014). MSM: A new flexible framework for multimodal surface matching. 
NeuroImage, 100, 414–426. 10.1016/j.neuroimage.2014.05.069 [PubMed: 24939340] 

Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Evans A, Rapoport J, & Giedd 
J (2006). Intellectual ability and cortical development in children and adolescents. Nature, 
440(7084), 676–679. 10.1038/nature04513 [PubMed: 16572172] 

Sled JG, Zijdenbos AP, & Evans AC (1998). A nonparametric method for automatic correction 
of intensity nonuniformity in mri data. IEEE Transactions on Medical Imaging, 17(1), 87–97. 
10.1109/42.668698 [PubMed: 9617910] 

Sun L, Zhang D, Lian C, Wang L, Wu Z, Shao W, Lin W, Shen D, & Li G (2019). Topological 
correction of infant white matter surfaces using anatomically constrained convolutional neural 
network. NeuroImage, 198, 114–124. 10.1016/j.neuroimage.2019.05.037 [PubMed: 31112785] 

Sun Y, Gao K, Wu Z, Li G, Zong X, Lei Z, Wei Y, Ma J, Yang X, Feng X, Zhao L, Le Phan T, Shin 
J, Zhong T, Zhang Y, Yu L, Li C, Basnet R, Omair Ahmad M, … Wang L (2021). Multi-Site 
Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge. IEEE Transactions on Medical 
Imaging, 40(5), 1363–1376. 10.1109/TMI.2021.3055428 [PubMed: 33507867] 

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, & Gee JC (2010). N4ITK: 
Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. 10.1109/
TMI.2010.2046908 [PubMed: 20378467] 

Wang F, Lian C, Wu Z, Zhang H, Li T, Meng Y, Wang L, Lin W, Shen D, & Li G (2019). 
Developmental topography of cortical thickness during infancy. Proceedings of the National 
Academy of Sciences of the United States of America, 116(32), 15855–15860. 10.1073/
pnas.1821523116 [PubMed: 31332010] 

Wang et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, & Shen D (2015). LINKS: Learning-based 
multi-source IntegratioN frameworK for Segmentation of infant brain images. NeuroImage, 108, 
160–172. 10.1016/j.neuroimage.2014.12.042 [PubMed: 25541188] 

Wang L, Nie D, Li G, Puybareau E, Dolz J, Zhang Q, Wang F, Xia J, Wu Z, Chen J, Thung K-H, 
Bui DT, Shin J, Zeng G, Zheng G, Fonov VS, Doyle A, Xu Y, Moeskops P, … Shen D (2019). 
Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 
Challenge. IEEE Transactions on Medical Imaging, 38(9), 2219–2230. 10.1109/tmi.2019.2901712

Wang Y, Hu D, Wu Z, Wang L, Huang W, & Li G (2022). Developmental Abnormalities of Structural 
Covariance Networks of Cortical Thickness and Surface Area in Autistic Infants within the First 2 
Years. Cerebral Cortex. 10.1093/cercor/bhab448

Wu Z, Wang L, Lin W, Gilmore JH, Li G, & Shen D (2019). Construction of 4D infant cortical surface 
atlases with sharp folding patterns via spherical patch-based group-wise sparse representation. 
Human Brain Mapping, 40(13), 3860–3880. 10.1002/hbm.24636 [PubMed: 31115143] 

Yeo BTT, Sabuncu MR, Vercauteren T, Ayache N, Fischl B, & Golland P (2010). Spherical demons: 
Fast diffeomorphic landmark-free surface registration. IEEE Transactions on Medical Imaging, 
29(3), 650–668. 10.1109/TMI.2009.2030797 [PubMed: 19709963] 

Zaitsev M, Maclaren J, & Herbst M (2015). Motion artifacts in MRI: A complex problem with many 
partial solutions. In Journal of Magnetic Resonance Imaging (Vol. 42, Issue 4, pp. 887–901). John 
Wiley & Sons, Ltd. 10.1002/jmri.24850 [PubMed: 25630632] 

Zhao F, Wu Z, Wang F, Lin W, Xia S, Shen D, Wang L, & Li G (2021). S3Reg: Superfast Spherical 
Surface Registration Based on Deep Learning. IEEE Transactions on Medical Imaging. 10.1109/
TMI.2021.3069645

Zhao F, Wu Z, Wang L, Lin W, Gilmore JH, Xia S, Shen Di., & Li G (2021). Spherical Deformable U-
Net: Application to Cortical Surface Parcellation and Development Prediction. IEEE Transactions 
on Medical Imaging, 40(4), 1217–1228. 10.1109/TMI.2021.3050072 [PubMed: 33417540] 

Zöllei L, Iglesias JE, Ou Y, Grant PE, & Fischl B (2020). Infant FreeSurfer: An automated 
segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 
years. NeuroImage, 218, 116946. 10.1016/j.neuroimage.2020.116946 [PubMed: 32442637] 

Wang et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Typical T1w and T2w infant brain MR images (from different subjects) after intensity 

inhomogeneity correction and their intensity histograms for different brain tissues at 

different ages.
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Fig. 2. 
Three 6-month-old brain images acquired with different scanners and imaging protocols, 

showing highly variable appearance patterns (upper row), with tissue segmentation maps by 

iBEAT V2.0 (lower row).
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Fig. 3. 
The framework of the iBEAT V2.0 computational pipeline. The framework includes 

an image segmentation component: (a) Input inhomogeneity-corrected T1w image 

(also applicable to T2w images, or both), (b) T1w image after skull stripping and 

cerebellum removal, and (c) Tissue segmentation map, with green indicating gray matter, 

white indicating white matter, and blue indicating cerebrospinal fluid; and a cortical 
surface reconstruction component: (d) Left/right hemisphere separation and filling of the 

noncortical regions with white matter, (e) Topology correction of white matter volume, 

(f) Reconstructed inner and outer cortical surfaces represented by triangular meshes, (g) 

Color-coded derived representative cortical properties, e.g., mean curvature, sulcal depth, 

local gyrification index, and cortical thickness, and (h) Parcellated cortical surfaces based on 

Desikan scheme.
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Fig. 4. 
T1w images, reconstructed inner, middle, and outer cortical surfaces (color-coded by cortical 

thickness in mm) from a subject at different ages. Red, yellow, and cyan contours indicate 

inner, middle, and outer cortical surfaces, respectively, overlaid on T1w images.
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Fig. 5. 
Comparison of processing results from Infant FreeSurfer and our pipeline for BCP scans 

at different age groups. (a) T1w images. (b) Tissue segmentation by Infant FreeSurfer. 

(c) Tissue segmentation by our pipeline. (d) Our reconstructed cortical surfaces overlayed 

on intensity images, with red contours indicating inner surfaces and green contours 

indicating outer surfaces. (e) Reconstructed inner cortical surfaces by Infant FreeSurfer. 

(f) Reconstructed inner cortical surfaces by our pipeline. (g) Reconstructed outer cortical 

surfaces (color-coded with cortical thickness) by our pipeline.
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Fig. 6. 
Processing results comparison between Infant FreeSurfer and our pipeline for 2 typical 

dHCP subjects and 2 typical MSMS6 subjects. (a) T1w images. (b) Tissue segmentation by 

Infant FreeSurfer. (c) Tissue segmentation by our pipeline. (d) Our reconstructed cortical 

surfaces overlayed on the intensity images, with red contours indicating inner cortical 

surfaces and green contours indicating outer cortical surfaces. (e) Reconstructed inner 

cortical surfaces by Infant FreeSurfer. (f) Reconstructed inner cortical surfaces by our 

pipeline. (g) Reconstructed outer cortical surfaces (color-coded with cortical thickness) by 

our pipeline.
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Fig. 7. 
Comparison between our results and the dHCP released results. (a) T2w images; (b) Gray 

matter and white matter tissue boundaries from our segmentation (green) and the dHCP 

released segmentation (red); (c) Color-coded vertex-wise surface distance maps between 

our reconstructed inner surfaces and dHCP inner surfaces; (d) Color-coded vertex-wise 

surface distance maps between our reconstructed outer surfaces and dHCP outer surfaces; 

(e) Close-up views of our reconstructed inner and outer surfaces in (c) and (d); (f) Close-up 

views of the dHCP released inner and outer surfaces in (c) and (d).
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Fig. 8. 
Quantitative comparison between our results and the dHCP released data with 558 scans. 

(a) Dice ratio of the gray matter and white matter; (b) The average surface distance (mm) 

between our reconstructed surfaces and the dHCP released surfaces.
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Fig. 9. 
Comparison of the reconstructed cortical surfaces in the occipital lobe of a typical subject 

using the dHCP pipeline and our pipeline. All surfaces are color-coded by mean curvature. 

(a) The posterior view of both hemispheres. (b) The medial view of the left hemisphere. (c) 

The medial view of the right hemisphere. For each view, we have magnified the occipital 

lobe for a detailed comparison.
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Fig. 10. 
Comparison with deep learning-based FastSurfer at different ages. The green contours 

indicate gray matter boundaries, and the red contours indicate white matter boundaries.
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Fig. 11. 
Quantitative evaluation of different methods on datasets from different scanners/protocols.
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Fig. 12. 
Quantitative evaluation of the gray matter (GM) and white matter (WM) segmentation 

accuracy with different combinations of T1w and T2w images using two evaluation metrics.
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Fig. 13. 
Comparison of segmentation results of typical pipelines for images with and without motion 

artifacts. (a) Results for images without motion artifacts. (b) Results for images with motion 

artifacts. (c) Difference maps of the segmentation results with and without motion artifacts.
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Fig. 14. 
Quantitative comparison of different methods on motion-free and motion-corrupted images. 

For the Dice ratio metric, the value from motion-corrupted images is presented in blue and 

the performance gap between motion-free and motion-corrupted images is shown in orange; 

For the ASD metric, the value from motion-free images is presented in purple and the 

performance gap is shown in orange. Herein, the Dice ratio and the ASD are computed by 

considering the manual label as a reference.
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Fig. 15. 
The T1w images (the first column), T1w images with motion (the second column), and the 

corresponding segmentation on T1w images with motion (with red contours indicating our 

segmentation, and the green contours indicating the manually labeled ground truth).
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Fig. 16. 
Quantitative comparison of segmentation differences (in terms of Dice ratio and Average 

Surface Distance (ASD) in mm) between motion-free and motion-corrupted images at 1, 6, 

12, and 24 months of age.
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Fig. 17. 
Quantitative comparison of segmentation differences using different image resolutions.
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Fig. 18. 
The tissue contrasts (values closing to 1 indicating low contrast) of different age groups on 

T1w (the first row) and T2w (the second row) images and the quantitative comparison of 

segmentation performance at different cortical regions (the third and fourth rows).
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Fig. 19. 
Typical reconstructed cortical surfaces with different levels of quality.
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Fig. 20. 
The developmental trajectories of the gray matter volume (mm3), white matter 

volume(mm3), the average cortical thickness (mm) and total cortical surface area (mm2) 

from the BCP dataset.
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Table 1.

Summary of three datasets used in the pipeline evaluation.

Dataset Age #Subjects #Scans T1w T2w Scanner

BCP 0 – 6 years 288 (136 males, 152 
females) 623

MPRAGE TSE

Siemens 
PRISMA

TR: 2400 ms TR: 3200 ms

TE: 2.24 ms TE: 564 ms

TI: 1060 ms n/a

Flip angle: 8° Flip angle: VAR

0.8 mm isotropic 0.8 mm isotropic

dHCP 29 – 45 postmenstrual weeks 505 (283 males, 222 
females) 558

IR-TSE TSE

Philips

TR: 4795 ms TR: 12000 ms

TE: 8.7 ms TE: 156 ms

TI: 1740 ms TI: n/a

0.5 mm isotropic 0.5 mm isotropic

MSMS6 About 6 months of age

6 6

MPRAGE TSE

Siemens 
PRISMA

TR: 2400 ms TR: 3200 ms

TE: 2.24 ms TE: 564 ms

TI: 1060 ms TI: n/a

Flip angle: 8° Flip angle: VAR

0.8 mm isotropic 0.8 mm isotropic

5 5

MPRAGE TSE

Siemens Trio

TR: 2400 ms TR: 3200 ms

TE: 2.19 ms TE: 561 ms

TI: 1000 ms TI: n/a

Flip angle: 8° Flip angle: 120°

1 mm isotropic 1 mm isotropic

5 5

GR SE

GE

TR: 7.6 ms TR: 2502 ms

TE: 2.9 ms TE: 91.4 ms

TI: n/a TI: n/a

Flip angle: 11° Flip angle: 90°

0.94×0.94×0.8 mm3 1×1×0.8 mm3

6 6

GR SE

Philips

TR: 10 ms TR: 2500 ms

TE: 4.6 ms TE: 310 ms

TI: n/a TI: n/a

Flip angle: 8° Flip angle: 90°

1 mm isotropic 1 mm isotropic
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