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Abstract. To characterize early cerebellum development, accurate segmentation
of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak
tissue contrast, extremely folded tiny structures, and severe partial volume effect,
infant cerebellum tissue segmentation is especially challenging, and the manual
labels are hard to obtain and correct for learning-based methods. To the best
of our knowledge, there is no work on the cerebellum segmentation for infant
subjects less than 24 months of age. In this work, we develop a semi-supervised
transfer learning framework guided by a confidence map for tissue segmentation
of cerebellum MR images from 24-month-old to 6-month-old infants. Note that
only 24-month-old subjects have reliable manual labels for training, due to their
high tissue contrast. Through the proposed semi-supervised transfer learning, the
labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and
6-month-old subjects, which have a low tissue contrast. Comparison with the
state-of-the-art methods demonstrates the superior performance of the proposed
method, especially for 6-month-old subjects.

Keywords: Infant cerebellum segmentation · Confidence map ·
Semi-supervised learning

1 Introduction

The first 2 years of life is the most dynamic postnatal period of the human cerebellum
development [1],with the cerebellumvolume increasing by 240% from2weeks to 1 year,
and by 15% from 1 to 2 years of age [2]. Cerebellum plays an important role in motor
control, and is also involved in some cognitive functions as well as emotional control
[3]. For instance, recent cerebellar findings in autism suggest developmental differences
at multiple levels of neural structure and function, indicating that the cerebellum is an
important player in the complex neural underpinnings of autism spectrum disorder, with
behavioral implications beyond the motor domain [4]. To characterize early cerebellum
development, accurate segmentation of the cerebellum into white matter (WM), gray
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matter (GM), and cerebrospinal fluid (CSF) is one of the most pivotal steps. However,
compared with adult cerebellum, infant cerebellum is much more challenging in tissue
segmentation, due to the low tissue contrast caused by ongoing myelination, extremely
folded tiny structures, and severe partial volume effect.

Most of the previous brain development studies have focused on the cerebral cortex
[5–10]. For instance,Wang et al. proposed an anatomy-guidedDensely-connectedU-Net
(ADU-Net) [11] for the cerebrum image segmentation of 6-month-old infants. However,
there are very few works proposed for pediatric cerebellum tissue segmentation [12–
16]. Chen et al. [17] proposed an ensemble sparse learning method for cerebellum tissue
segmentation of 24-month-old subjects. Romero et al. [15] presented a patch-based
multi-atlas segmentation tool called CERES, that is able to automatically parcellate the
cerebellum lobules, and is the winner of a MICCAI cerebellum segmentation challenge.
To the best of our knowledge, there is no work on cerebellum tissue segmentation for
infant subjects less than 24 months of age. Figure 1 shows an example of T1-weighted
(T1w) and T2-weighted (T2w) MR images (MRIs) of cerebellum at 6, 12, 18 and 24
months of age, and the corresponding segmentations are obtained by ADU-Net [11]
and the proposed semi-supervised method in the last two rows. From 6 months to 24
months, we can observe that the cerebellum volume increases rapidly, and the tissue
contrast is varying remarkably, i.e., 6-month-old cerebellum exhibits an extremely low
tissue contrast, while 24-month-old cerebellum shows a much high contrast. As also
confirmed from thepreviouswork [14], 24-month-old cerebellumcanbe automatically or
manually segmented due to its high contrast. However, for other early ages, especially for
6-month-old cerebellum, it is challenging even for manual segmentation by experienced
experts. Directly applying themodel trained on 24-month-old subjects to younger infants
cannot derive satisfactory segmentation results. For example, we directly apply a trained
model on 24-month-old subjects using ADU-Net [11] to other time points, and show the
derived results in the third row of Fig. 1. It can be seen that the results are not accurate,
due to distinct tissue contrast and distribution between 24-month-old subjects and other
younger subjects. Therefore, in this work, we will investigate how to effectively utilize
the labels from 24-month-old subjects with high contrast to the other time-point subjects
with low contrast. This is a general yet challenging transfer learning task, if we consider
24-month-old subjects as a source site while the remaining time-point subjects as a target
site. Note that all studied subjects in this paper are cross-sectional.
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Fig. 1. T1- and T2-weighted MRIs of the cerebellum at 6,
12, 18 and 24 months of age, with the corresponding
segmentation results obtained by ADU-Net [9] and the
proposed semi-supervised method.

In this paper, we propose
a semi-supervised transfer
learning framework guided by
the a confidencemap for tissue
segmentation of cerebellum
MRIs from 24-month-old to
6-month-old infants, where
only 24-month-old subjects
with high tissue contrast have
manual labels for training.
Then, for other younger sub-
jects without manual labels,
we retrain the segmentation
models to handle the different
tissue contrast and distribu-
tion guided by the confidence
map. Specifically, in order to

select reliable segmentations as training datasets at 18, 12, and 6 months of age, a
confidence network is trained to estimate the reliability of automatic tissue segmentation
results [18]. Second, the confidence map is further incorporated as a spatially-weighted
loss function to alleviate the effect from these regions with unreliable segmentations.
This paper is organized as follows. Section 2 introduces the dataset and related pre-
processing. Then, the proposed semi-supervised framework is detailed in Sect. 3. In
Sect. 4, experimental results and analyses are presented to demonstrate the superior
performance of our method. Finally, Sect. 5 concludes the paper.

2 Dataset and Preprocessing

T1w and T2w infant brain MRIs used in this study were from the UNC/UMN Baby
Connectome Project (BCP) [19] and were acquired at around 24, 18, 12, and 6 months
of age on Siemens Prisma scanners. During scanning, infants were naturally sleeping,
fitted with ear protection, and their heads were secured in a vacuum-fixation device. T1w
MRIs were acquired with 160 sagittal slices using parameters: TR/TE = 2400/2.2 ms
and voxel resolution = 0.8 × 0.8 × 0.8 mm3. T2w MRIs were obtained with 160
sagittal slices using parameters: TR/TE = 3200/564 ms and voxel resolution = 0.8 ×
0.8 × 0.8 mm3.

Accurate manual segmentation, providing labels for training and testing, is of great
importance for learning-based segmentation methods. In this paper, we manually edited
eighteen 24-month-old subjects to train the segmentation model. Limited number of 18-,
12-, and 6-month-old subjects are manually edited for validation. From 24- to 6-month-
old subjects, the label editing becomes gradually difficult and more time-consuming due
to the low tissue contrast and extremely folded tiny structures.

3 Method

Figure 2 illustrates the flowchart of the proposed semi-supervised segmentation frame-
work guided by a confidence map. As we can see, there are infant subjects at 6, 12,
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18, and 24 months of age, while only 24-month-old manual segmentations are used for
training. After training the 24-month-old segmentation (shorted as 24 m-S) model, the
automatic segmentations are used to generate error maps compared with ground truth,
which are viewed as targets for 24-month-old confidence model (shorted as 24 m-C).
However, the trained 24 m-S model cannot be directly applied to 18-month-old subjects
due to different tissue contrast and data distribution, as shown in Fig. 1. To effectively
utilize the labels from 24-month-old subjects to 18-month-old subjects, we apply the
24 m-C model to estimate the reliability of automatic tissue segmentation results on
the 18-month-old subjects. Then, based on the confidence maps, top K-ranked subjects
with good segmentations are chosen as training sets for 18-month-old subjects, and the
confidence map is further incorporated as a spatially-weighted loss function to alleviate
possible errors in the segmentations. The same procedure can be also applied to train
12-month-old segmentation (12 m-S) model and 6-month-old segmentation (6 m-S)
model.

Fig. 2. Flowchart of the proposed semi-supervised segmentation framework guided by confidence
map. For 24-month-old subjects, the ground truth is edited manually, the loss function of the seg-
mentation model Lseg is cross entropy, and the loss function of the confidence network Lcp is
multi-task cross-entropy. For other months, the ground truth is chosen from automatic segmenta-
tions, the loss function of the segmentation model Lseg−weights is the proposed spatially-weighted
cross entropy.
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3.1 Confidence Map of Automatic Segmentations

To derive reliable 18- (12-, 6-) month cerebellum segmentations, we first employ the
confidence map to evaluate the automatic segmentations generated by the trained 24 m-
S (18 m-S, 12 m-S) model. Inspired by [18], we apply U-Net structure [20] with the
contracting path and expansive path to achieve the confidence map. Instead of using
adversarial learning, the errormap (Fig. 3 (a)) generated based on the differences between
manual results and automatic segmentations, is regarded as ground truth to train the
confidencemodel.We employ amulti-task softmax loss function,which ismore effective
to learn whether the segmentation results are reasonable or not voxel-by-voxel, as shown
in Fig. 3 (b). Note that the darker the color, the worse the segmentation. The 3D zoomed
view of WM segmentation is shown in Fig. 3 (c), where the intersection of red lines
denotes a missing gyrus that is the same region with Fig. 3 (b), and the corresponding
ground truth is also displayed in Fig. 3 (d).

Fig. 3. (a) is the error map generated based on the differences between ground truth and automatic
segmentations. (b) shows the confidence map (a probability map), where the intersection of red
lines points out a low confidence region, which means the segmentation is relatively unreasonable.
(c) is the corresponding 3D surface rendering results, i.e., the missing gyrus as indicated in (b),
and (d) is the ground truth.

3.2 Semi-supervised Learning

After training the 24 m-S model with manual labels, we retrain the 18 m-S, 12 m-S and
6 m-S models based on 18-, 12-, and 6-month-old subjects, respectively. In particular,
the training labels are automatically generated from the automatic segmentations, and a
spatially-weighted cross-entropy loss is proposed to learn from reasonable segmentations
guided by the confidence map.

Training Segmentation Model for 24-month-old Subjects: We employ the ADU-
Net architecture [11] as the segmentation model, which combines the advantages of
U-Net and Dense block, and demonstrates outstanding performance on infant brain seg-
mentation. As shown in Fig. 2, the ADU-Net includes a down-sampling path and an
up-sampling path, going through seven dense blocks. Then, eighteen paired T1w and
T2w images with their corresponding manual segmentations are as inputs of ADU-Net
to train the 24 m-S model. We evaluate the performance of the 24 m-S model in terms of
Dice ratio on five 24-month-old testing subjects, with the accuracy of 90.46 ± 1.56%,
91.83 ± 0.62% and 94.11 ± 0.38% for CSF, GM and WM, respectively.
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Automatic Generation of Training Labels for 18-, 12-, 6-month-old Subjects:
With the guidance of the confidencemap, we selectK top-ranked subjects with good seg-
mentations as training sets for each month. The rank is based on the average confidence
values of each confidence map. Figure 4 shows a set of automatic segmentation results
on 12-month-old subjects, ranked by the average confidence values. Specifically, the
12-month-old cerebellum segmentations and confidence maps are obtained by 18 m-S
and 18 m-C models, respectively. From Fig. 4, we can observe that the confidence order
is consistent with the accuracy of segmentations, which also proves the effectiveness
of the confidence network. Therefore, according to the confidence order, the chosen K
top-ranked subjects are reliable for training the segmentation model of other months.

Fig. 4. A set of automatic segmentation results on 12-month-old subjects, ranked by the average
confidence values. The first row is the confidence maps, and the second row is the automatic 3D
WM segmentations, which are obtained from 18 m-S and 18 m-C model, respectively.

Spatially-Weighted Cross-entropy Loss with Confidence Map: Although we select
reliable segmentation results as the training labels for 18-, 12- and 6-month-old subjects
based on the confidencemap, for each selected subject, there are still many locationswith
unreliable labels. Considering this issue, we further incorporate the confidence map into
the loss function, therefore, the segmentation model would paymore attention to reliable
labels, while less attention to unreliable labels. The spatially-weighted cross-entropy loss
function is written as,

Lseg−weights = −w
∑

i=C

yi ln xi

whereC is the class number, xi represents the predicted probability map, yi is the ground
truth, and w denotes the weights from the confidence map.

Implementation Details: We randomly extract 1,000 32 × 32 × 32 3D patches from
each training subject. The lossLcp for the confidence network ismulti-task cross-entropy.
The kernels are initialized by Xavier [38]. We use SGD optimization strategy. The
learning rate is 0.005 and multiplies by 0.1 after each epoch.
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4 Experimental Results

In this section, we first investigate the optimal choice of number K of training subjects,
then make a comparison of semi-supervised learning and supervised learning to demon-
strate the effectiveness of the proposed method. Later, we perform an ablation study
of confidence weights. Finally, the performance of our method is compared with vol-
Brain [21] and ADU-Net method [11] on five 18-month-old subjects, five 12-month-old
subjects, and five 6-month-old subjects with manual labels.

Selection of the Number K of Training Subjects: According to the confidence map,
we select theK top-ranked subjects as training images for the 18m-S (12m-S and 6m-S)
models. Considering that the reliability of ordered segmentations gradually decreases,
we compare the performance associated with the different number K to choose the best
one, as shown in Fig. 5. It is expected with the increase of K (<10), the Dice ratio is
gradually improved in terms of CSF, GM and WM results, whereas the value begins
to drop after K > 10, due to introducing too many unreliable labels into the training.
Therefore, we set K = 10 in all experiments.

Fig. 5. Comparison of different K top-ranked
training subjects, in terms of Dice ratio.

Fig. 6. Comparison of the supervised and
semi-supervised learning on 6-month-old
subjects, in terms of Dice ratio in WM
segmentation.

Semi-supervised vs. Supervised Learning: Although the limited number of manual
segmentation results for 18-, 12- and 6-month-old subjects are purposely created for
validation only, we are wondering whether the performance with the semi-supervised
learning is better than the supervised learning or not. To this end, for the supervised
learning, we select N subjects with manual labels as the training subjects. Similarly,
for the semi-supervised learning, we select the same N training subjects as the super-
vised learning, plus additional top K-ranked subjects based on the confidence. The same
remaining subjects with manual labels are used for testing. The comparison is shown in
Fig. 6 in terms of WM segmentation, along with the number of training subjects N. The
number of training subjects with manual labels for the supervised learning is N, while N
+ top K for the semi-supervised learning. As we can see, compared with the supervised
learning, the semi-supervised learning (i.e., the proposed method) greatly improves the
accuracy of tissue segmentations, especially when the number of training subjects with
manual labels is highly limited.
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Ablation Study: To demonstrate the advantage of the proposed spatially-weighted
cross-entropy loss, we make a comparison between the results using the cross-entropy
loss without/with confidence weights. Figure 7 shows the comparison ofWM segmenta-
tions, where the first (second) column shows the surface rendering results without (with)
confidence weights. We can see that without the guidance of confidence weights, there
are many topological and geometric errors as indicated by red arrow in the first column,
whereas these errors are alleviated as shown in the second column, which is also more
consistent with the corresponding manual labels in the last column.

Fig. 7. Comparison of the WM segmentations. From left to right: segmentations using cross-
entropy loss, the proposed spatially-weighted cross-entropy loss, and the ground truth.

Comparison with the State-of-the-Art Methods: We make comparisons with vol-
Brain [21] and ADU-Net method [11], where the volBrain is an automated MRI Brain
Volumetry System (https://volbrain.upv.es/index.php) and the ADU-Net architecture is
the backbone of our segmentation model. In the volBrain system, we choose the CERES
pipeline [15] to automatically analyze the cerebellum,whichwins aMICCAI cerebellum
segmentation challenge. Figure 8 displays the comparison among these methods on 18-,
12-, and 6-month-old testing subjects. Tissue segmentations of the proposed method are
much more consistent with the ground truth, which can be observed from both 2D slices
and 3D surface rendering results.

Furthermore, we compute the Dice ratio of tissue segmentation (i.e., CSF, GM, and
WM) on 15 infant subjects (i.e., five 18-month-old subjects, five 12-month-old subjects,
and five 6-month-old subjects), to evaluate the performance of our method. In order
to compare the difference of segmentation results, Wilcoxon signed-rank tests are also
calculated for statistical analysis inTable 1. The proposedmethod achieves a significantly
better performance in terms of Dice ratio on CSF and GM for 18-month-old subjects
and CSF, GM, and WM for 12- and 6-month-old subjects.

https://volbrain.upv.es/index.php
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Fig. 8. Segmentation results of the volBrain [21], ADU-Net [11] and the proposedmethod on 18-,
12-, and 6-month-old infant subjects from BCP, with the corresponding 3DWM surface rendering
views. The red/green/blue color denotes CSF/GM/WM. (Color figure online)

Table 1. Dice ratio (%) of cerebellum segmentation results on testing subjects at 18 months, 12
months, and 6 months of age. “+” indicates that our proposed method is significantly better than
both volBrain and ADU-Net methods with p-value < 0.05.

Age in month Method CSF GM WM

18 volBrain N/A 78.23 ± 1.10 54.43 ± 3.87

ADU-Net 87.57 ± 1.70 91.57 ± 0.43 93.52 ± 0.65

Proposed 91.36 ± 1.11+ 93.40 ± 0.75+ 94.39 ± 0.69

12 volBrain N/A 70.80 ± 13.54 49.86 ± 4.70

ADU-Net 84.06 ± 2.40 89.83 ± 0.88 91.89 ± 0.68

Proposed 90.50 ± 1.25+ 93.08 ± 0.47+ 94.14 ± 0.48+

6 volBrain N/A 77.76 ± 1.24 50.96 ± 3.91

ADU-Net 76.68 ± 0.76 86.30 ± 0.79 88.98 ± 1.87

Proposed 85.35 ± 0.76+ 90.23 ± 1.15+ 92.02 ± 1.92+

5 Conclusion

To deal with the challenging task of infant cerebellum tissue segmentation, we proposed
a semi-supervised transfer learning framework guided by the confidence map. We took
advantage of 24-month-old subjects with high tissue contrast and effectively transferred
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the labels from 24-month-old subjects to other younger subjects typically with low
tissue contrast. The experiments demonstrate that our proposed method has achieved
significant improvement in terms of accuracy. We will further extend our method to
newborn subjects and validate on more subjects.
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