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Abstract. Autism spectrum disorder (ASD) is mainly diagnosed by the
observation of core behavioral symptoms. Due to the absence of early
biomarkers to detect infants either with or at-risk of ASD during the first
postnatal year of life, diagnosis must rely on behavioral observations long after
birth. As a result, the window of opportunity for effective intervention may have
passed when the disorder is detected. Therefore, it is clinically urgent to identify
imaging-based biomarkers for early diagnosis and intervention. In this paper, for
the first time, we proposed a volume-based analysis of infant subjects with risk
of ASD at very early age, i.e., as early as at 6 months of age. A critical part of
volume-based analysis is to accurately segment 6-month-old infant brain MRI
scans into different regions of interest, e.g., white matter, gray matter, and
cerebrospinal fluid. This is actually very challenging since the tissue contrast at
6-month-old is extremely low, caused by inherent ongoing myelination and
maturation. To address this challenge, we propose an anatomy-guided, densely-
connected network for accurate tissue segmentation. Based on tissue segmen-
tations, we further perform brain parcellation and statistical analysis to identify
those significantly different regions between autistic and normal subjects.
Experimental results on National Database for Autism Research (NDAR) show
the advantages of our proposed method in terms of both segmentation accuracy
and diagnosis accuracy over state-of-the-art results.
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1 Introduction

Autism spectrum disorder (ASD) refers to a group of complex neurodevelopmental
disorders characterized by repetitive and characteristic patterns of behavior and diffi-
culties with social communication and interaction. The latest analysis from the Centers
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for Disease Control and Prevention estimated 1 in 68 children diagnosed with ASD in
the U.S.. ASD is mainly diagnosed by the observation of core behavioral symptoms
[1]. For many neurodevelopmental disorders, brain dysfunction may precede abnormal
behavior by months or even years. However, according to Interagency Autism Coor-
dinating Committee strategic plan, due to the absence of early biomarkers to detect
people either with or at-risk of ASD, diagnosis must rely on behavioral observations
long after birth. As a result, ASD is not typically diagnosed until around 3–4 years of
age in the U.S. [2]. Consequently, intervention efforts may miss a critical develop-
mental window. Thus, it is extremely important to detect ASD earlier in life for better
intervention.

Magnetic resonance imaging (MRI) based characterization of ASD has been
explored as a complement to the current behavior-based diagnosis [3]. MRI-based brain
volumetric studies on children and young adults with ASD found abnormalities in the
hippocampus [4], precentral gyrus [5], and anterior cingulate gyrus [6]. However, most
of the autistic subjects involved in previous studies are 2+ years old. In fact, the first
year of postnatal development represents the most drastic postnatal developing phase,
with a rapid tissue growth and milestones of a wide range of cognitive and motor
functions [7]. This early period is critical in neurodevelopmental disorders such as ASD
[8]. In this work, for the first time, we perform a volume-based analysis on infants at 6
months of age with risk of autism. To perform volume-based analysis and further
identify possible imaging biomarkers, accurate segmentation of the infant brain into
different types of tissue, e.g., white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF), is the most critical step. It will allow reliable quantification of volumetric
tissue abnormalities for ASD [9]. However, accurate segmentation of infant brain MRI
is challenging, especially for those at a very early age, such as at 6 months old [10], due
to the lowest tissue contrast caused by the largely immature myelination [10]. For
instance, the 1st column of Fig. 1 shows representative examples of T1-weighted (T1w)
and T2-weighted (T2w) MRI scanned at 6 months of age. It can be observed that
intensities in WM and GM are within similar range (especially around the cortex), even
they were acquired with an imaging protocol dedicated for maximizing tissue contrast
[10]. Such isointensity poses a significant challenge for accurate tissue segmentation.
To the best of our knowledge, few studies focused on tissue segmentation of 6-month-
old infants at-risk of ASD.

Fig. 1. (a) and (b) show T1w and T2w 6-month-old infant brain images with extremely low
tissue contrast caused by the inherent ongoing myelination and maturation. (c) and (d) are the
segmentation results by [11] and the proposed work with anatomical guidance, respectively, with
their corresponding inner surfaces shown in (e) and (f), and cortical thickness (in mm) shown in
(g) and (h). Without anatomical guidance, some WM is missing by previous work [11] as
indicated by the yellow ellipse (c), which results in abnormal cortical thickness (g).
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Recently, deep convolutional neural networks (CNNs) have demonstrated out-
standing performances in a wide range of computer vision and image analysis appli-
cations. For example, fully convolutional networks (FCNs) [12, 13], as a natural
extension of traditional CNNs, are now a common choice for semantic image seg-
mentation in computer vision. FCNs train end-to-end segmentation models by directly
optimizing intermediate feature layers. To compensate for the resolution loss induced
by pooling layers, U-Net [12] introduces skip connections between their down-
sampling and up-sampling paths, thus helping the up-sampling paths recover fine-
grained information from the down-sampling layers. To date, many network archi-
tectures further incorporate the residual connection [14] or dense connection [15] to
CNNs [11]. Although these previous networks can automatically learn effective feature
hierarchies in a data-driven manner, most of them ignore the prior anatomical
knowledge during the segmentation. A typical example can be seen in Fig. 1(c), in
which some WM is missing, leading to abnormal cortical thickness in (g). Particularly,
in the task of 6-month-old infant brain tissue segmentation, there are two kinds of
critical prior knowledge, i.e.,

(1) tissue contrast between CSF and GM is higher than that between GM and WM;
(2) cortical thickness is within a certain range.

Capitalizing on these kinds of prior knowledge, we propose an Anatomy-guided
and Densely-connected U-Net (ADU-Net) method for accurate segmentation of 6-
month-old infant brain MRI. Specifically, we first train an initial ADU-Net to segment
CSF and GM+WM, considering that CSF is relatively easier to be distinguished. Then,
based on CSF segmentation and the second kind of prior knowledge, we estimate the
outer cortical surface (i.e., CSF and GM boundary), and use it as guidance to train a
cascaded ADU-Net for estimation of the inner cortical surface (i.e., GM and WM
boundary). Based on the segmentation results, we parcellate infant brain into 83 ROIs
[16] for computing volumetric measures of 6-month-old autistic infants and healthy
controls, and finally perform early diagnosis.

2 Method

Dataset and Preprocessing. The T1w and T2w MR images of 18 de-identified infants
were gathered from National Database for Autism Research (NDAR). All images were
acquired at around 6 months of age on a Siemens 3T scanner. All scans were acquired
while the infants were naturally sleeping and fitted with ear protection, with their heads
secured in a vacuum-fixation device. T1w MR images were acquired with 160 sagittal
slices using parameters: TR/TE = 2400/3.16 ms and voxel resolution = 111 mm3.
T2w MR images were obtained with 160 sagittal slices using parameters:
TR/TE = 3200/499 ms and voxel resolution = 1 � 1 � 1 mm3. Note that the imaging
protocol has been optimized to maximize tissue contrast [10]. For image preprocessing,
T2-weighted images were linearly aligned onto their corresponding T1w MR images.
Then, in-house tools were used to perform skull stripping, intensity inhomogeneity
correction, and histogram matching for each MR modality.
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Accurate manual segmentation is of importance for learning-based segmentation
methods. However, due to the low contrast and huge number of voxels in 3D brain
image, manual segmentation is extremely time-consuming. Hence, to generate reliable
manual segmentations, we first take advantage of longitudinal follow-up 24-month-old
scan of the same subject, with high tissue contrast, to generate an initial segmentation
for 6-month-old scans by using a publicly available software iBEAT (http://www.nitrc.
org/projects/ibeat/). This is based on the fact that, at term birth, the major sulci and gyri
in the brain are already presented, and are generally preserved but only fine-tuned
during early postnatal brain development [17]. Therefore, we can utilize the late-time-
point longitudinal images (e.g., 24-month-old), which can be segmented with high
accuracy by using existing segmentation tools, e.g., FreeSurfer [18], to guide the
segmentation of early-time-point (e.g., 6-month-old) infant images. Based on the
segmentation results generated by iBEAT, manual editing was further performed by an
experienced neuroradiologist. For each subject, around 200,000 voxels (24% of total
brain volume) were re-labeled. In this way, the potential bias from the automatic
segmentations can be largely minimized and also the quality of manual segmentation
can be ensured.

2.1 Anatomy-Guided Densely-Connected U-Net (ADU-Net)

To derive anatomic guidance from the outer surface, we need to first classify brain
images into two classes, i.e., CSF and WM+GM. Inspired by the recent success of
densely-connected networks [15] and U-Net
[12] in medical image segmentation, we
propose an anatomy-guided densely-
connected U-Net architecture (shorted as
ADU-Net) for the segmentation of 6-month-
old infant brain images. The proposed net-
work architecture is shown in Fig. 2, which
includes a down-sampling path and an up-
sampling path, going through seven dense
blocks. Each dense block consists of three
BN-ReLU-Conv-Dropout operations, in
which each Conv includes 16 kernels and the
dropout rate is 0.1. In the down-sampling
path, between any two contiguous dense
blocks, a transition down block (i.e., Conv-
BN-ReLU followed by a max pooling layer)
is included to reduce the feature map reso-
lution and increase the receptive field. While
in the up-sampling path, a transition up
block, consisting of a transposed convolu-
tion, is included between any two contiguous dense blocks. It up-samples the feature
maps from the preceding dense block. The up-sampled feature maps are then con-
catenated with the same level feature maps in the down-sampling path, and then input
to the subsequent dense block. The final layer in the network is a convolution layer,

Fig. 2. Diagram of our architecture for
segmentation. Input 1: T1w and T2w
images for (CSF, WM+GM) segmentation
to construct anatomy guidance; Input 2:
T1w and T2w images and anatomy guid-
ance for (WM, GM) segmentation.
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followed by a softmax non-linearity to provide the per-class probability at each voxel.
For all the convolutional layers, the kernel size is 3 � 3 � 3 with stride size 1 and 0-
padding.

Network Implementation. We randomly extract 32 � 32 � 32 3D patches from
training images. The loss function is cross-entropy. The kernels are initialized by
Xavier, and the bias are initially set to 0. We use SGD optimization strategy. The
learning rate is 0.005 and multiplies by 0.1 after each epoch. Training and testing are
performed on a NVIDIA Titan X GPU. Basically, training a ADU-Net takes around
96 h and in application stage, segmenting a 3D image requires 70–80 s.

Anatomical Guidance Generation. T1w and T2w MR images of training subjects
and their corresponding manual segmentations are employed to train the network. To
generate the anatomical guidance, as mentioned, we first train an initial ADU-Net to
classify the brain images into two classes (i.e., CSF and WM + GM). Figure 3 shows
the final estimated CSF and WM + GM segmentation maps for a testing image (in
Fig. 1). Based on the segmentation results, it is straightforward to construct a signed
distance function (i.e., a level set function) with respect to the boundary of GM/CSF, as
shown in Fig. 3(c). Basically, the function value at each voxel is the shortest distance to
its nearest point on the boundary of GM/CSF, taking positive value for voxels inside of
WM+GM, and negative value for voxels outside of WM+GM. Therefore, the zero level
set corresponds to the outer surface, as shown in Fig. 3(d).

Anatomy Guided Tissue Segmentation. We further classify WM+GM into WM and
GM separately by training a cascaded ADU-Net with the same architecture as in Fig. 2.
It is worth noting that, besides using T1w and T2w MR images, the level set function
(Fig. 3(c)) is also input to the network as an anatomical guidance for tissue segmen-
tation. By recalling the inner cortical surface of the testing image in Fig. 1, we can see
that the cortical thickness is incorrect due to the missing WM areas. With anatomical
guidance from the outer surface in Fig. 3(d), more WM voxels are expected to keep
cortical thickness in a reasonable range. From Fig. 1(d), it can be observed that the
WM in the yellow ellipse is recovered, and thus the missing inner gyrus is also
recovered (Fig. 1(f)) by the anatomical guidance, resulting in a reasonable cortical
thickness in Fig. 1(h). Similarly, the topological errors, i.e., holes or handles, causing
abnormal cortical thickness, can also be corrected.

Fig. 3. (a) and (b) show the estimated CSF and WM + GM segmentations for a testing image in
Fig. 1. (c) illustrates the signed distance function with respect to the outer surface shown in (d).
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2.2 ROI-Based Volumetric Measures as Imaging Biomarkers

To parcellate 6-month-old infant brain image into different regions of interest (ROIs),
we employ a multi-atlas strategy. In particular, a total of 33 two-year-old subjects were
employed as individual atlases (www.brain-development.org) [16]. Each atlas consists
of a T1w MR image and a label image of 83 ROIs. We first employ FreeSurfer [18] to
segment each T1w MR image into WM, GM, and CSF. Then, we register all atlases
into each 6-month-old infant image space based on their segmentations using ANTs
[19]. Finally, we employ majority voting to parcellate each 6-month-old infant brain
into 83 ROIs.

We use leave-one-out cross-validation to evaluate the diagnosis performance.
Basically, one subject is used for testing and the rest subjects are used for training. For
the training data, we perform unpaired t-test on each of ROI measures between autistic
and normal infant subjects, and find ROI measures with statistically significant dif-
ferences as potential autism-related biomarkers. With these identified biomarkers, we
perform early diagnosis of at-risk infants in the testing data. Following [20], we adopt
random forest as the classifier for disease diagnosis. Instead of using just a single ratio
of extra-axial fluid to the total cerebral volume as in [10], we employ the volumes of
CSF, GM and WM in each identified autism-related ROI as features to construct the
diagnosis model. This process is repeated until all subjects are used for testing.

3 Experimental Results and Conclusions

Segmentation Results on 18 6-Month-Old Infant Subjects from NDAR. We first
make comparisons with state-of-the-art methods on 18 6-month-old infant subjects from
NDAR. Among these competing methods, SegNet [21] has achieved promising results
in natural images segmentation; U-Net [12] has achieved the best performance on ISBI
2012 EM challenge dataset, and Bui et al.’s method [22] has won the 1st prize in iSeg-
2017. For all the methods, we perform the same 6-fold cross-validation. In each fold, we
use 12, 3 and 3 subjects as training, validation, and testing datasets, respectively. The
results on a testing subject by different methods are shown in Fig. 4. The estimated inner
surface and cortical thickness by the proposed method are much more consistent with the
ground truth from manual segmentation. We further quantitatively evaluate the results
by using the Dice ratio and Modified (95th percentile) Hausdorff Distance (MHD). As
shown in Table 1, our proposed method achieves a significantly better performance in
terms of Dice ratio on WM and GM, and MHD on WM. We then apply our trained
model on other 59 infants (29 sex- and age- balanced autistic/30 normal subjects) and
further perform ROI-based volumetric measurement and diagnosis as detailed below.

Diagnosis/Prediction on 6-Month-Old Infant Subjects from NDAR. Based on the
brain parcellation results, we then perform unpaired t-test on each ROI between 29
autistic and 30 normal subjects, who were later diagnosed at 24 months old. Among
these two groups, we find statistically significant differences in many ROIs (p-
value < 0.005), e.g., right precentral gyrus, left hippocampus, cingulate gyrus, cuneus,
and lateral occipital cortex. Most of the autism-related regions identified by our method
were also confirmed with previous reports on other children and young adults. For
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example, it was found in [23] that ASD is associated with decreased structural con-
nectivity and functional connectivity in the lateral occipital cortex. This disruption may
impair the integration of visual communication cues in ASD individuals, thereby
impacting their social communications. In [4], it was found that children (7.5–12.5
years of age) with autism had larger left hippocampus than the controls. Although the
ages of studied subjects are different, these results encourage us to explore the indi-
vidualized diagnostic value of such potential biomarker regions. The last column of
Table 1 provides the classification accuracy (ACC) and the area under the ROC curve
(AUC) using leave-one-out cross-validation. We make a quick comparison with [20],
in which they achieved 0.87 ACC and 0.96 AUC on 19 autistic and 19 normal infants.
Besides, we also perform ROI-based volumetric measurements based on the segmen-
tations achieved by other methods in Table 1. We found that much less significant
regions were identified based on their segmentations. The corresponding ACC and
AUC by other methods are also provided in the last column of Table 1. It is clear that
our method achieves the highest diagnosis/prediction accuracy, which also indicates a
high segmentation accuracy achieved by the proposed ADU-Net.

Fig. 4. Comparison with state-of-the-art methods on 18 6-month-old infant subjects from
NDAR. The first and second rows show the inner surface and corresponding cortical thickness,
respectively, with the zoomed views shown in the third and fourth rows. From left to right:
results by SegNet [21], U-Net [12], Bui et al.’s method [22], proposed method, and ground truth
from manual segmentation. Color bar indicates the thickness in mm.

Table 1. Segmentation accuracy on 18 6-month-old infant images, and diagnosis accuracy on
other 59 infant subjects (29 autistics and 30 normal controls) from NDAR. The bold values
indicate that our proposed method is significantly better than others with p-value < 0.005.

Method Dice ratio (%) MHD (mm) Accuracy
& AUCCSF GM WM CSF GM WM

SegNet [21] 89.5 ± 1.41 75.5 ± 0.96 80.6 ± 1.23 8.81 ± 1.11 7.80 ± 1.49 9.11 ± 1.10 0.67, 0.43

U-Net [12] 92.7 ± 0.89 89.0 ± 0.56 91.9 ± 0.43 6.68 ± 0.80 6.62 ± 0.74 6.79 ± 0.61 0.78, 0.53

Bui et al. [22] 92.3 ± 0.85 88.5 ± 0.57 91.6 ± 0.44 6.59 ± 0.86 6.97 ± 1.22 8.08 ± 2.09 0.87, 0.51

Proposed 95.8 ± 0.58 92.3 – 0.54 93.3 – 0.43 5.59 ± 0.72 5.84 ± 0.88 5.05 – 1.10 0.90, 0.98

Volume-Based Analysis of 6-Month-Old Infant Brain MRI 417



To conclude, for the first time, this paper presents a novel volume-based analysis on
6-month-old infant subjects at-risk of autism. We first proposed an anatomy-guided and
densely-connected convolutional neural network for accurate tissue segmentation.
Based on accurate segmentations, we then perform brain parcellation and statistical
analysis to identify significantly different regions between autistic and normal infant
subjects for final classification. Comparisons with the state-of-the-art methods
demonstrate the advantages of our proposed method in terms of both segmentation
accuracy and diagnosis accuracy. Our future work will include improvement of diag-
nosis accuracy by using surface-based features, e.g., cortical thickness and surface area,
and further validation on more infant subjects.
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